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Abstract

Cryptocurrencies are often considered as a new asset class. They do exhibit
unique behaviour and they are hardly correlated to any other asset class. This
paper provides an overview of all the quantitative risks of cryptocurrencies,
from volatile and distributional behaviour to market efficiency and manipula-
tion. Cryptocurrency log returns exhibit anti-persistent behaviour with volatil-
ity clustering and the distribution of the log returns is extremely peaked with
fat tails. Therefore the best fitting distribution, is the t-distribution. Further-
more, the ARMA(2,2)-GARCH(1,3) with t-distribution residuals is the best
fitted model for the log returns of Bitcoin, this further supports the volatility
clustering, autocorrelation and fat tails hypothesis. On top of that, the cryp-
tocurrency market frequently experiences flash crashes and pump and dumps
and is weakly efficient.

1 Introduction

In 2008, Nakamoto (2008) introduced the world to new phenomena, cryptocurrencies
and blockchain. Satoshi Nakamoto is the first to create a decentralised cash system

*This paper is based on a chapter from Van der Auwera et al. (2020)



(BlockGeeks, 2019) and cryptocurrencies are the first successful attempt to make
transactions without the need of a central authority. Moreover, transaction details
are publicly available but the identity of the parties is harder to uncover (pseudonony-
mous). All transaction details are stored on a distributed public ledger, also known as
blockchain, while the identities of the seller and buyer are made anonymous through
an encryption algorithm. Each transaction is safe through encryption and a digital
signature, which makes them unalterable. The network of users makes sure that the
network is constantly updated and that all the transactions are recorded, moreover,
users receive rewards as an incentive to keep the blockchain honest and running.

Since the creation of Bitcoin (BTC), numerous cryptocurrencies have come into ex-
istence, some more successfully than others. Bitcoin is not the perfect currency, it
is merely the first cryptocurrency and as such it has the first mover advantage over
all coins that follow. Coins created after Bitcoin tackle one of the issues that users
experienced when trading in BTC. Litecoin, a coin created by Charlie lee in 2011
(Blockgeeks, 2018), attempts to solve some of the greater flaws of Bitcoin, it offers
faster and cheaper transactions and improves the storage-base efficiency. Further-
more, one important feature of cryptocurrencies is pseudonymity, this means that it
is hard to track the identity of the person making trades on the blockchain. Monero is
a coin which focuses on non-traceability and tries to achieve complete anonymity for
its users. Ethereum, created by Vitalik Buterin in 2015, is the first blockchain-based
distributed computing platform, where operations are executed through smart con-
tracts (Buterin et al., 2014). Ether, the cryptocurrency of Ethereum, has the second
to highest market capitalisation (Coinmarketcap, 2020).

People are attracted to cryptocurrencies for numerous reasons, i.e. the absence of
a central authority, the pseudonymity, the transparency of the transactions on a
distributed ledger, the speed of transactions, immediacy of funds, ... Additionally,
cryptocurrencies and blockchain offer many opportunities for safely storing data and
making transactions. For example, blockchain offers a solution to tracks who owns
which stocks and bonds in real time (Kahan and Rock, 2008). Besides all the op-
portunities and advantages cryptocurrencies have to offer, there are also a lot of
risks involved in trading these “coins”. This paper discusses the quantitative risks of
cryptocurrencies.

Section 1 will detail the distribution of the log returns of several cryptocurrencies.
Then Section 2 describes the correlation of the cryptocurrency market and the corre-
lation with other asset classes. In Section 4 and 5, we will discuss two forms of market
malfunction/manipulation where the cryptocurrency market frequently suffers from,
namely “flash crashes” and ‘pump and dump”. Furthermore, Section 6 and 7 discuss



the volatile and distributional behaviour of Bitcoin and finally Section 9 concludes.

2 Descriptive Analysis of Returns

First, we perform some time-series analysis on a variety of cryptocurrencies and fur-
ther also investigate their correlation with other more traditional assets. One must be
cautious with cryptocurrency data since it varies considerable (Alexander and Dakos,
2020). We typically will work with the so-called log-returns over a single time unit

(in most cases one day):
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where ¢ denotes the time and F; is the asset price at a certain time ¢. We will use
the daily historical prices of Ripple, Monero, Bitcoin and Ethereum to sketch an
overview of the distributional and volatile behaviour of cryptocurrencies. Note that
cryptocurrency exchanges trade 24/7. We will mainly focus on the historical closing
prices starting from the first of January 2016 onward.

Table 1 gives a descriptive analysis of the log returns of the different cryptocurrencies
and regular assets. Note that in comparison to other more traditional assets, the dif-
ference between the maximal and minimal value of the log returns of cryptocurrencies
is high, as is the yearly standard deviation (std.). The median is in each case for cryp-
tocurrencies smaller than the mean, this indicates the presence of positive outliers.
The value in between parenthesis represents the p-value of testing the null-hypothesis
of zero average returns. For all the returns under examination, the null-hypothesis
cannot be rejected.

All the log returns of cryptocurrencies also exhibit a higher kurtosis (kurt.) than the
normal distribution, this means that the distribution is likely to have fat tails and
will exhibit more peakedness. The kurtosis of the cryptocurrencies is comparable to
those of emerging government bonds. The skewness (skew.) of the log returns is
positive except for Bitcoin. This positive skewness is not present in typical equity
markets. We also observe that commodities (gold and the commodity index) and
the Euro Dollar exchange rate have a kurtosis lower than 3, the kurtosis of a normal
distribution, while the S&P500 stock index has a higher kurtosis. The commodity
index and the S&P500 stock index both have a negative skewness, while gold and the
exchange rate have a positive skewness.



Min.  Median Mean Max. Yearly Std. Kurt. Skew.

BTC -0.225 0.003 0.002 (0.117)  0.287 0.645 2.869  -0.218
ETH -0.319 -0.000  0.004 (0.250) 0.312 1.027 3.466  0.058
XMR -0.285 0.001 0.004 (0.433) 0.625 1.166 9.102 1.116
XMR* -0.285 0.001 0.003 (0.143)  0.528 1.096 2.923  0.655
XRP -0.496 -0.003  0.003 (0.179) 0.881 1.194 26.023 2.562
XRP* -0.496 -0.003  0.002 (0.279) 0.593 1.085 14.013 1.471
XAU -0.018 0.000 0.000 (0.410) 0.024 0.097 0.620  0.068
BCOM -0.027  0.000 -0.000 (0.612) 0.027 0.104 1.492  -0.316
S&P500  -0.042 0.001 0.000 (0.286) 0.048 0.130 6.122  -0.621
EURUSD -0.024 0.000 -0.000 (0.819) 0.030 0.098 2311  0.101

The value between the parenthesis represents the p-value of the hypothesis of zero
average returns. The starred (*) tickers represent the returns without the maximal
return.

Table 1: Descriptive analysis of daily log returns

A comparison among the log returns of the cryptocurrencies shows that Ripple has
simultaneously the smallest and the largest log returns on his name. Moreover, it
has the highest yearly standard deviation among all the cryptocurrencies. From a
historical time-series perspective, Ripple is hence the most volatile of all the cryp-
tocurrencies under consideration. When we delete the maximal return, as depicted
with the starred ticker, we can still conclude the same remarks. Bitcoin is the least
volatile of all the cryptocurrencies which are under examination here. Ripple ex-
hibits the highest kurtosis and skewness, which means that Ripple has heavier tails
and more large outliers than the remaining cryptocurrencies. The median of the log
returns of all the cryptocurrencies are similar and very close to zero.

The log returns of all the investigated assets from 01/01/2016 until 25/02/2019 are
probably stationary according to the Augmented Dickey Fuller (ADF) and Phillips
Perron (PP) test. The tested null-hypothesis is:

Hj : The time series is non-stationary (not necessarily with a trend) .

Stationary timeseries are timeseries whose unconditional joint probability remains the
same over time, the weak stationarity only requires the (co)variance and mean to be
constant over time. On the other hand, non-stationary behaviour can have cycles,
random walks and trends or a combination of these three. Table 2 shows that the
null-hypothesis is rejected at 5% significance level because the p-value for the ADF-
and PP-test is smaller than 0.05, which means that the process is stationary. The

4



ADF KPSS PP

Test P-value Test P-value Test P-value

statistic statistic statistic
BTC -33.861 0.000 0.340 0.105 -31.120 0.000
ETH -17.836 0.000 0.605 0.022 -34.790 0.000
XMR -11.305 0.000 0.476 0.046 -36.319 0.000
XRP -7.165 0.000 0.147 0.399 -35.356 0.000
XAU -25.510 0.000 0.195 0.363 -29.201 0.000
BCOM -25.395 0.000 0.172 0.330 -29.981 0.000
S&P500 -8.984 0.000 0.115 0.516 -23.842 0.000
EURUSD -42.172 0.000 0.142 0.414 -42.417 0.000

Table 2: Result of different stationarity tests

null-hypothesis test for the Kwiatkowski Phillips Schmidt and Shin (KPSS) test is
Hy : The time series is weakly stationary.

The null-hypothesis is rejected for Ethereum and Monero at a 5% significance level
because the corresponding value in Table 2 is smaller than 0.05. For all the other log
returns the weakly stationary hypothesis is not rejected.

Figure 1 shows one important remark, the log returns of cryptocurrencies do exhibit
periods where high returns cluster together and periods where low returns reside,
this could point to volatility clustering in the log returns. Another observation is
that half of the time the returns are positive and half of the time the returns are
negative, the daily log returns of cryptocurrencies seem to be mean-reverting to zero
and Figure 2 provides some further examination of the log returns over time. The
cumulative returns over time from mid 2015 until February 2019 is shown. The
cryptocurrencies have had an upward movement until the end of 2017. From 2018
onward mainly negative returns were realized. In comparison to the traditional assets,
cryptocurrencies have had a much higher cumulative return.

Cryptocurrencies often exhibit behaviour where large returns happen due to crashes
in the price. In November 2018, the price of Bitcoin began to drop. The drop started
with a crash of nearly 10% between the 13 of November and the 14" of Novem-
ber after nearly a month of having a stable price around 6200 USD, see Figure 3a.
Moreover, the whole market dropped from a stable market price of 209 billion USD
to 187 billion USD, which is a drop of 10.53% effectively. The mid November drop
is the start of the price decline of Bitcoin, the level of 13 November 2018 will not be
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reached again in the near future. Between 24 February and 25 February the price
of Bitcoin again suffered from a crash, as Figure 3b clearly shows. This time the
price of Bitcoin dropped 9.7% over the course of only hours. Similar behaviour as
in Figure 3b is found in Ethereum, Litecoin and many other cryptocurrencies. This
could be a consequence of the leader (Bitcoin) follower behaviour in cryptocurrencies.
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Figure 3: Price drops in Bitcoin Figure 3a represents a price drop from 13/11/2018
until 14/11/2018 of nearly 10%. Figure 3b depicts a drop of 9.7% during the month
February of that same year.

3 Correlation and Diversification

3.1 Correlation between Several Cryptocurrencies

Figures 4a, 4b and 4c represent heatmaps of the Pearson correlation between the
daily log returns of several cryptocurrencies from 2016 until 2018. Bitcoin (BTC)
and Litecoin (LTC) exhibit a high correlation in the year 2016, which is no surprise
since both currencies have similar characteristics and prospects. The strong positive
dependence between these two cryptocurrencies continues to exists for following years.
As discussed, Ripple (XRP) and Stellar (XLM) also have similar characteristics, since
they both act in the remittance field. The correlation between them also support this
claim through the years. Note that EOS did not exist at in 2016.

Note that the correlation between several cryptocurrencies has significantly increased
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Figure 4: Correlation heatmaps between different cryptocurrencies through the years.

over the last three years. In other words, not only currencies with similar characteris-
tics have high correlation, but the whole market seems to move in the same direction.
One particular reason for the cryptomarket to be so correlated is because many cryp-
tocurrencies are bought using Bitcoin or Ether. Hence, the dominant position of
Bitcoin or Ethereum in the market is fortified.

3.2 Correlation between Cryptocurrencies and Other Stocks

Next, we investigate the correlation of cryptocurrencies with various other types of
assets: commodities, equity and currencies. The commodity class will be represented
by gold, the security class by S&P500 stock index and to model the currency behaviour



we use the EUR/USD exchange rate.
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Figure 5: The rolling correlation with window sizes of 10, 60 and 180 days.

First, we investigate the correlation between the log returns of Bitcoin and the
S&P500 stock index. Figure ba shows the rolling Pearson correlation over a win-
dow of a predefined number of days between the log returns of both assets. The
assets appear to become less correlated if the number of data points to construct it
becomes larger. Moreover, the correlation, when taking into account 180 data points
per window, is nearly zero, but positive. Besides, short term correlations fluctuate
around zero. The correlation between Bitcoin and the S&P500 based on a window of
180 days never exceeds 30%, which indicates that Bitcoin is not very correlated to it.

The correlation between Bitcoin and the price of gold in USD is shown in Figure 5b.



A rolling window of respectively 10, 60 and 180 days is used to find the correlation
over time. The 10-day correlation fluctuates around zero, like the correlation between
S&P500 index and Bitcoin. The 180-day correlation, in this case is mainly negative,
this means that the price movements in gold and Bitcoin act in opposite directions.
Moreover, the 180-correlation is very close to zero but negative, which means that
the price movements of gold and Bitcoin are more or less uncorrelated or move in
opposite directions.

The Pearson correlation between the log returns of EUR/USD exchange rate and Bit-
coin is plotted in Figure 5¢. The 10-day correlation fluctuates around zero, however,
longer time-periods lead to a more negative correlation. The 180-day correlation is
even persistently below zero. Note that the 60-day correlation goes up in the end,
hence it is likely that the 180-day correlation will follow this pattern.

The one year correlation between Bitcoin and other major asset classes (bonds, oil,
US real estate and emerging market currencies) stays within the boundaries of being
a differentiated risk reducer (see Figure 5d) (Burniske and White, 2017) because the
correlation remains under 0.3 in absolute value. The asset classes are quantified by

e Bond: Bloomberg Barclays US aggregate bond index (LBUSTRUU)
e Oil: crude oil futures (CL1 Comdty)

e Emerging markets currencies: J.P. Morgans emerging markets currency index
(FXJPEMCS Index)

e Real estate: Vanguards US real estate ETF (VNQ).

Moreover, the average correlation with these major asset classes is fluctuating around
zero, which means that Bitcoin is not heavily dependent on other assets.

4 Flash Crash

A flash crash (Kenton, 2018) is a sudden steep decline in price of the underlying
asset. Many people think flash crashes are a part of artificial market manipulation.
There are several reasons why flash crashes can happen; human error, fraud, high
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frequency trading and computer/software glitches are all possible triggers. High fre-
quency trading is an automated trading system, where computers are able to detect
changing market conditions and make trades accordingly. These computers place
enormous orders at light speed and as a result they can enlarge the negative price
movements. Each crash is unique and it is difficult to pinpoint the exact cause. Many
cryptocurrencies exchanges are open via an API system to all kinds of trading bots.
Some bots try to play the bid ask spread, others do automated trading on the basis
of technical analysis or other kinds of algorithms. The presence of such bots, often
written by non-experienced participants increase the risk of flash-crashes.

In May 2019 the BTC-Canadian Dollar (CAD) price experienced a flash crash of
99.1% on the exchange Kraken (SFox, 2019), see Figure 6. The price for one Bitcoin
dropped from 11 800 CAD to a low of 101.2 CAD. Only a few minutes after the
flash crash, the price again reached its normal level. One of the possible reasons of
the crash is the limited liquidity on Kraken to exchange Bitcoin for Canadian Dollar.
Some traders were very lucky to obtain Bitcoins at the low price. However, this also
means that the sellers of those particular Bitcoins made a huge loss. Stop-loss-orders
can be the reason why there were Bitcoins available in the market at such a low price.
A stop-loss-order is an order which is send to the market once a particular price-level
is breached. If the level is breached, the stop-loss-order becomes an order. In this
case, the order became a sell order at the market price during the crash.

5 Pump and Dump

Market manipulation is a crime in regulated markets, however many crypto-exchanges
are unregulated and hence are under no real external supervision. This makes them
vulnerable for all kinds of manipulation. Pump and dump is a form of such market
abuse, in the regulated markets this scheme is illegal. However, since crypto-markets
are mostly unregulated, it occurs much more frequently there. Some players drive
the price of a stock they hold up (pump), by creating false interest in it. Once the
price has risen sufficiently high, they sell their stocks on the market at an higher price
than the original (true) market price (dump). The objective of a pump and dump
scheme practitioner is distorting supply and demand in their favour. In general, pump
and dump actions tend to work better on small illiquid stocks, because then a sharp
increase in trade volume can send the price up drastically.

In cryptocurrencies there exists organized groups who perform pump and dump
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Figure 6: Flash crash of BTC/CAD in May 2019 from cryptowat.ch

schemes. The groups post ’insider tips’ regarding cryptocurrencies, which promise
quick gains and wealth. The participants in a pump and dump scheme are told when
and where to buy the specified coin via messages. Usually a pump and dump scheme
drives the trading volume and price up simultaneously.

Figure 7 shows two obvious pump and dump operations, one on the 7% of February
2019 and one on the 18" of February 2019. From this figure, one can clearly see that
the volume and price, on these days, has increased significantly. After the initial wave
of buying, the participating investors need to act quickly to sell the asset, while at
the same time they encourage non-suspecting investors to buy the asset. The pump
and dump group tries to convince the non-suspecting investors to buy the asset by
promoting the asset and as such try to find support for the upward price move. The
wave of selling the assets, by the participants in the pump and dump, decreases the
price often even more than its original level.

Telegram channels advertise pump and dumps schemes nearly daily, sometimes even

multiple times a day. Since the exchanges of cryptocurrencies are hardly regulated or
even unregulated today.
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6 Distributional Behaviour

Log Returns
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Figure 8: Difference in log returns

The timeseries of the log returns of Bitcoin do not follow a white noise process. This
can be seen by comparing Figure 8a, which represents the log returns of Bitcoin over
time, and Figure 8b, which depicts a typical white noise process. The log returns of
Bitcoin exhibit a more volatile pattern with so-called volatility-clusters (periods of
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high volatility). There are indications that the log returns are stationary, according to
the tests in Table 2, but the price movement in different time periods vary quite a lot.
As mentioned before, the log returns of cryptocurrencies exhibit volatility clustering,
it is important to accurately model the time variability of the volatility.
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Figure 9: Quantile-quantile plot of log returns of different cryptocurrencies

Figure 9 shows the quantile plots of the different cryptocurrencies their log returns.
In this case, the quantiles of the Bitcoin, Ethereum, Ripple and Monero their log
returns are compared to quantiles of the normal distribution. One can immediately
see that the log returns have far heavier tails than the normal distribution suggests.
Hence, the distributions of cryptocurrencies has to be chosen among the distributions
which allow for fat tails. The most commonly used distributions with heavy tails are:

e Pareto distribution,
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Burr distribution,

Cauchy distribution,

Lognormal distribution,

Weibull distribution,

Frechet distribution,

T distribution.

Next, these distributions are used to find an appropriate distribution for the log
returns of cryptocurrencies. If zq, ..., x, are independent observations of X, then the
maximum-likelihood parameters of each distribution are the values maximizing the
likelihood

1(©) = [[ fz::©)
i=1
where ©® = (6,,...,6,) is a vector of parameters specifying f(-). In order to check
which distribution with the optimal parameters implemented gives the best fit, the
Kolmogorov-Smirnov (KS) test statistic is used. KS-test performs a test to see if the
distribution G/(z) of an observed random variable matches a given distribution F(z).
The null-hypothesis states that the two distributions are equal.

Using these optimal parameters, one can compare all of the distributions of the
specified dataset. If more than one distribution offers a good fit according to the
Kolmogorov-Smirnov test statistic, the distribution which offers simultaneously the
lowest AIC and BIC value is chosen. AIC/BIC selects the best fit according to max-
imum likelihood and at the same time punishes for the number of parameters, as
shown in Equations (2).

AIC =2k — 2In (Lyas) 2)
BIC =In(n)k — 21n (Lpaz)

In Equation (2) n denotes the number of observations, k is the number of estimated
parameters and L,,,, represents the maximum of likelihood function.

Table 3 represents the outcome of the KS-test statistic for all of the data samples. The
Kolmogorov-Smirnov test tests if the data comes from a predetermined distribution.
In other words, the null-hypothesis is

Hy: the data comes from the specified distribution.
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Cauchy distribution T distribution

Test statistic  P-value Test statistic  P-value
BTC 0.032 0.354 0.038 0.187
ETH 0.041 0.032 0.039 0.055
XMR 0.043 0.009 0.023 0.438
XRP 0.030 0.234 0.030 0.252

Table 3: Kolmogorov-Smirnov test on the log returns of different cryptocurrencies

For the log returns of Bitcoin, the null-hypothesis for the t and Cauchy distribu-
tion cannot be rejected, since the p-value is larger than the significance level 0.05.
Therefore, both distributions offer a good fit. However, the t distribution has a lower
AIC and BIC value, therefore this distribution seems currently the most appropriate
distribution in terms of fitting the historical time series. Figure 10a displays all of
the fitted distributions to the empirical data of the log returns of Bitcoin. The distri-
bution which fits the log returns of Bitcoin the best, according to AIC/BIC and the
KS-test statistic, is the t distribution with location parameter 0, scale parameter 0.02
and the degrees of freedom are equal to 1.72. Moreover, we find similar results by
doing the same analysis for Ethereum, Monero and Ripple their log returns. All the
other cryptocurrencies also choose the t distribution as the best fitting distribution
according to AIC/BIC and KS-test. These results can be seen visually in Figure 11.
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7 Volatile Behaviour

Cryptocurrencies are highly volatile assets. Fiat currency, like Yen, Dollar or Euro,
do not fluctuate much, while cryptocurrencies have seen their fair share of severe price
movements. The highly volatile nature does not allow cryptocurrencies to accurately
convey relative prices of goods and services in the economy and leads to uncertainty
to its holders regarding its value. In the next section, we will have a closer look at
the volatile behaviour of Bitcoin.

The analysis is restricted to a gold price index (“XAU Curncy”), a commodity in-
dex (“BCOM”) and the Euro Dollar exchange rate (“EURUSD”) for the non-crypto
assets. Figure 12 shows the yearly volatility in percentage of different ’securities’
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Figure 12: Volatility of different 'securities’ in percentage, quantified by yearly stan-
dard deviation of the log returns using a rolling window of 10 days.

measured by standard deviation of the log returns using a rolling window of 10 days,
we also include the VIX for comparison. VIX stands for the Chicago Board Options
Exchange volatility index, which measures the implied volatility of S&P500 index
options. The daily volatility at time ¢ is calculated as :

w _ 72
SN SR
w
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where 7 is the average return over the window (w), the yearly standard deviation
is obtained by multiplying the daily standard deviation with v/365. The data span
a period from 10/08/2015 until 14/02/2019. One thing that is immediately clear
from Figure 12 is that cryptocurrencies are persistently more volatile than regular
securities, some days the yearly standard deviation is ten times higher.

The beginning of 2018 also seems to be the start of a new period volatility-wise for
cryptocurrencies. This is around the same time that futures on Bitcoin were traded
on exchanges, people now take short-positions on the Bitcoin market more easily and
this apparently has calmed down the high volatility.

7.1 ARMA-GARCH Model

In this section, we will fit an ARMA-GARCH model to the daily log returns of
Bitcoin from 01/01/2016 until 17/11/2018, this leaves a total of 1051 observations
for the fitting. The data from 18/11/2018 until 25/02/2019 will be used as test data
to check the goodness of fit of the ARMA-GARCH model. As mentioned before, the
log returns of cryptocurrencies exhibit excess kurtosis and fat tails, these are typical
evidences of heteroskedastic effects such as volatility clustering. Moreover, Figure 13
represents the squared log returns of Bitcoin, which fluctuate around a constant level.
However, they also exhibit periods where large and small changes of log returns cluster
together, this can indicate volatility clustering.

We also test for long-run-dependency (LRD) of the returns and the volatility. We will
calculate the LRD using the Hurst parameter (Bacon, 2008). Figure 14a and Figure
14b represent the rolling monthly Hurst parameter of respectively the returns and
the volatility of Bitcoin. From these Figures, it can be concluded that the returns
and the volatility of the returns have a Hurst exponent smaller than 0.5, this means
that the these time-series are anti-persistent. In other words, they fluctuate violently
but are mean-reverting.

To further investigate this behaviour, the sample partial and regular autocorrelation
function of the squared log returns are plotted in Figure 15. The sample autocorre-
lation function (ACF) and partial autocorrelation function (PACF) plots show sig-
nificant autocorrelation in the squared log returns of Bitcoin. The Ljung-Box test
formally supports this claim, the null-hypothesis of no-autocorrelation is rejected for
the first 40 lags, see Table 4, hence, there is volatility clustering in the data.
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Figure 13: Squared log returns of Bitcoin
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Figure 14: The long-run-dependency calculated over a monthly rolling window.

The significance of the lags in the PACF and ACF plots shows that both the AR and
MA part are needed to capture the behaviour of the mean-process of the log returns
correctly. The volatility process is simulated using the GARCH model because the
ARMA model assumes a constant variance given past information for the log returns,
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Figure 15: Autocorrelation plots of the squared BTC log returns

which is clearly not the case for Bitcoin. The GARCH model corrects the ARMA
model for the volatility clustering and fat tails in the data, the fat tails are further
corrected by using a t-distribution for the residuals. Therefore, in order to model the
log returns accurately, we need both the ARMA and GARCH processes. In other
words, the log returns (r;) follow an ARMA (p1, ¢1)-GARCH(ps, ¢2) process when:

p1 q1
re=c+ E (ﬁﬂ”tfi + g Giet,i + €
i=1 i=1

€t = Zto-t
Zt ~ t(V)

p2 q2
2 2 2
o =w+ E Vioi_; + E i€y
i=1 =1

where ¢; denotes the residuals with zero mean of the log returns of Bitcoin at time ¢,
it substitutes the part which cannot be predicted and is generated from the GARCH
process with parameters v; and ;. Z; is a noise term of the t-distribution with v
degrees of freedom. The mean-model is predicted by an ARMA-model, where ¢; are
the autoregressive (AR) coefficients, 6; are the moving average (MA) coefficients and
c represents the mean. All the parameters need to be estimated based on the data of
the log returns.

First, we fit an ARMA(p;, ¢1) model, the best combination of (p;, ¢;) is chosen
according to two information criteria, namely the Akaike (AIC) and Bayesian (BIC)
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Lag Test statistic ~ P-value Lag Test statistic = P-value

1 45.646 1.417e-11 21 208.671 7.071e-33
2 52.844 3.349e-12 22 211.740 5.646e-33
3 D7.372 2.139e-12 23 213.018 1.001e-32
4 74.404 2.663e-15 24 220.160 1.246e-33
5 85.985 4.678e-17 25 229.144 6.771e-35
6 97.105 1.007e-18 26 233.710 2.682e-35
7 101.477 5.342e-19 27 235.012 4.557e-35
8 104.789 4.468e-19 28 236.667 6.526e-35
9 111.441 7.481e-20 29 246.790 2.134e-36
10 115.900 3.428e-20 30 248.146 3.454e-36
11 119.568 2.214e-20 31 249.899 4.633e-36
12 121.922 2.556e-20 32 251.557 6.417e-36
13 125.237 1.850e-20 33 252.606 1.149e-35
14 127.532 2.085e-20 34 252.615 3.205e-35
15 145.599 1.800e-23 35 254.057 4.717e-35
16 167.101 3.186e-27 36 259.481 1.219e-35
17 173.152 6.647e-28 37 261.729 1.249¢-35
18 173.444 1.898e-27 38 263.909 1.310e-35
19 180.988 1.977e-28 39 264.241 3.025e-35
20 182.373 3.329e-28 40 308.823 3.136e-43

Table 4: Ljung-Box test for no-autocorrelation on the squared log returns of Bitcoin.

(pl, (11) AIC BIC

(2, 2) 5925.662 5950.450
(3, 3) 5927.039 5961.742
(3,2) 5927.602 5957.347
(2, 3) 5927.611 5957.356
(4, 2) 5929.202 5963.905

Table 5: AIC/BIC values of the ARMA(py, ¢1) fit on the log returns of Bitcoin.

information criteria. Table 5 depicts the different AIC- and BIC-values of several
combinations of (p1, ¢q1), it is clear that ARMA(2,2) offers simultaneously the lowest
AIC- and BIC-value and therefore this model is chosen to model the mean process of
the log returns.
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Coef. Std. err. Z P-value 95.0% Conf. Int.
03] -1.694 0.009 -185.838 0.000 [-1.712, -1.676]
¢ -0.983 0.010 102,622 0.000 [-1.002, -0.964]
6, 1.702 0.011 148727 0.000 [1.680, 1.725]
0, 0.980 0.011 90.315 0.000 [0.959, 1.001]
c 0.0016 0.000 40.906 0.000 [0.002, 0.002]

Coef. denotes the fitted coefficients, Z is the test statistic and the p-value gives an
interpretation of the significance of the coefficient and the last column gives a 95%

confidence interval of the coefficients.

Table 6: Model results of an ARMA fit to the log returns of Bitcoin.

Table 6 gives the specifications of the fitted ARMA(2,2) model; coef denotes the
fitted coefficients, Z is the test statistic and the p-value gives an interpretation of
the significance of the coefficient and the last column gives a 95% confidence interval
of the coefficients. Note that all p-values for the coefficients are smaller than 0.05,
hence the coefficients are deemed significant to predict the mean model. The standard
error is 1% for the auto regressive part, this indicates that the Bitcoin log returns are
strongly mean-reverting.
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Figure 16: Autocorrelation plot of the model residuals squared

The squared residuals of the fitted ARMA(2,2) model still display autocorrelation,
see Figure 16. In fact, this is what we expect because the GARCH-model needs to

be used on the residuals.
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according to the test data as displayed in Figure 17. However, we can only be certain
the ARMA-GARCH model is a good fit after the GARCH model is specified.

— BTC returns
—— In-sample prediction

oq\ruv

Returns (%)

Dec Jan Feb
019

Time
Figure 17: Mean-process of the model

We will now simultaneously fit the ARMA and GARCH models on the data, as
explained in Equation (3). We will scale the returns by 100 before estimating the
ARMA-GARCH model, this helps the optimizer to converge, since the scale of the
volatility intercept is much closer to the scale of the other parameters in the model.
Moreover, Z; is given a student t-distribution due to the heavy tails of the distribution
of Bitcoin log returns. The lowest AIC/BIC values across different combinations of
(p2, q2) determine the best fitting GARCH model. Table 7 depicts the AIC/BIC
values for these different combinations, as a result, (p2, g2)=(1,3) provides the best
combined AIC/BIC score.

Table 8 provides the model specifications for the ARMA(2,2)-GARCH(1,3) model
fitted to the data. The ARMA-GARCH model in full (with the scaled returns r; for
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(p2,q2) AIC BIC
(1,3)  5365.070 5394.815

(2,3)  5366.980 5401.682
(3,3) 5368.980 5408.640
(1,2)  5369.999 5394.786
(2,2)  5371.999 5401.744

Y

Table 7: AIC/BIC values of the best fitting GARCH(pa, ¢2) model on the log returns
of Bitcoin.

Coef. Std. Err. T-value P-value
¢ 0.217 0.056 3.84794 0.000
01 -0.005 0.003 -1.525 0.127
02 -0.991 0.003 -329.674 0.000
0, -0.001 0.003 -0.368 0.713
0, 0.993 0.000 5118.236 0.000
w 0.225 0.113 1.989 0.047
" 0.267 0.042 6.309 0.000
Y 0.123 0.108 1.142 0.254
Wy 0.193 0.098 1.961 0.049
3 0.416 0.097 4.301 0.000
v 3.340 0.259 12.884 0.000

Table 8: ARMA(2,2)-GARCH(1,3) model results on the log returns of Bitcoin.

rf = 0.217 — 0.005r;_, — 0.9917} , — 0.001€;_1 + 0.993¢; o + €
€; = Z;0y where Z; ~ t(3.340) (4)
of = 0.225 + 0.26707 | +0.123¢7_, + 0.193¢; , + 0.416¢€7 ..

Notice that the parameters of the final ARMA(2,2) part are different from the pre-
viously specified ARMA(2,2) model because the final model is constructed by simul-
taneously fitting the ARMA and GARCH part. The sum of the o and v coefficients
are close to 1, which indicates a high degree of volatility persistence. The estimated
GARCH coefficients are all significant except for ¢ at a 5% significance level. ¢, and
01 are both not-significant at a 5% significance level and both coefficients are also
close to zero, this means that they do not differ significantly from zero. Note that
05 is highly significant and large, this confirms the hypothesis of the autocorrelation
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Test statistic P-value

ARCH(5)  0.07081  0.7902
LB 0.03135  0.8595

Table 9: The Ljunx-Box (LB) test for the squared residuals and the Arch LM (ARCH)
test on the standardized residuals, which respectively test the null-hypothesis of no-
autocorrelation and no-arch effects.

structure.

Table 9 represents the Ljunx-Box (LB) test for the squared residuals and the Arch
LM (ARCH) test on the standardized residuals, with null-hypothesis’:

Ho(LB) : The residuals have no-autocorrelation
Ho(ARCH) : The residuals have no-arch effect.

The p-value for the two tests is higher than 0.05, hence it is not possible to reject
the null-hypothesis in both cases. The chosen model is probably appropriate for the
Bitcoin log returns since there are no arch-effects left and the residuals do not exhibit
volatility clustering.

The ARMA-GARCH model also allows for Value-at-Risk (VaR) prediction, which
can be calculated as
VCLR(O&) = /lt—&—l + (3't+1ta<l/)7

where a denotes the confidence level, fi;11 and 6411 need to be estimated based on
the ARMA-GARCH model and t,(v) is the a-quantile of a t-distribution with v
degrees of freedom. The model is able to forecast the VaR, we use a one step ahead
forecast with a rolling window of 100 days. Figure 18 provides an overview of the 95%
VaR forecast of the test dataset, the actual returns and the breaches of the VaR are
shown on the graph. There are only 3 breaches on 100 days. We use the conditional
(Christoffersen) and the unconditional (Kupiec) test to check the accuracy of the
VaR, with null-hypothesis:

H, : Correct exceedances of the VaR limit.

Table 10 shows the outcome of both the conditional and unconditional test for ex-
ceedances, both tests have a p-value bigger than the significance level (0.05), therefore,
we can say that the VaR limit is accurate.
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Figure 18: 95% Value-at-Risk forecast using a rolling window of 100 days

Test statistic  P-value

Kupiec 1.616 0.204
Christoffersen 2.841 0.242

Table 10: Results of the conditional and unconditional test for exceedances on the
log returns of Bitcoin.

Market Efficiency

In this section, we will test the efficiency of the cryptocurrency market. The efficient
market hypothesis developed byMalkiel and Fama (1970) and offers three types of
market efficiency. The weak form of market efficiency says that past returns cannot
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Runs test Bartels test  BDS test AVR test DL test-C}, DL test-K,

0.09 0.68 0.00 0.65 0.22 0.24

Table 11: P-values of the test results of the weak form of market efficiency.

be used to predict the future. Due to the erratic behaviour of Bitcoin, it is most likely
that if cryptocurrency markets are efficient, they will uphold the weak form.

Urquhart (2016) finds that Bitcoin is not weakly efficient, when the hypothesis is
tested on a sample from 2013 until mid 2016. We test for the weak form of market
efficiency on the log returns of Bitcoin from 2015 until September 2019. We will
follow the approach of Urquhart to test if the Bitcoin market is weakly efficient. The
Runs test (Wald and Wolfowitz, 1940) and the Bartels test (Bartels, 1982) check
if the returns are independent as null hypothesis. The BDS test (Broock et al.,
1996) is a popular non-parametric test for serial dependence where the null-hypothesis
states that the returns are i.i.d. and the alternate hypothesis tells that the model is
misspecified. The AVR test (Choi, 1999) determines if the returns are performing a
random walk and the variance of price difference of order ¢ is p times the variance of
the price difference (p and ¢ are determined based on the data). The Dominguez and
Lobato test (DL test) (Dominguez and Lobato, 2003) has as null hypothesis that the
returns follow a martingale difference process. The p-values of each test are depicted
in Table 11.

From Table 11 one can see that the null-hypothesis of independence cannot be rejected
by both the Bartels and Runs test on a 5% significance level. The BDS test rejects
the fact that returns are i.i.d. on a 5% significance level. The null hypothesis of the
DL test cannot be rejected, therefore the returns might follow a martingale difference
process, also the AVR test cannot be rejected. The tests thus suggest that the returns
of Bitcoin exhibit weak efficiency, which is also a conclusion of Wei (2018). Moreover,
according to Wei (2018), liquidity plays a role in the market efficiency and return
predictability.

9 Conclusion

The cryptocurrency market is an extremely inter-correlated market, where Bitcoin has
the first mover advantage over other coins and hence, it takes up most of the market
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capitalisation. However, other coins, like Litecoin, Ethereum, Monero, Ripple, ...
are gaining vast ground with each their own investor base. Cryptocurrencies can be
thought of as a separate asset class since it does not correlate to any other asset class.
Therefore, cryptocurrencies are a differentiated risk reducer (Burniske and White,
2017).

The cryptocurrency market is a fairly young market, it emerged in 2008 with the
publication of the white paper of Satoshi Nakamoto (Nakamoto, 2008) and gained
popularity among a broader public in 2015. The market is still infantile; small coins
suffer from market manipulation through pump and dumps and flash crashes are
also not uncommon. A flash crash is a sudden steep decline in the price of the
underlying cryptocurrency, usually caused by high speed automatic trading, error or
fraud. A pump and dump, on the other hand, is an organised increase of the price
to sell as much currency as possible at the higher rate. Despite the fact that market
manipulation frequently happens, several tests indicate that the market is weakly
efficient, where liquidity plays an important role (Wei, 2018).

Lastly, this paper provides evidence that cryptocurrencies exhibit volatility cluster-
ing and mean-reverting behaviour, i.e. anti-persistent behaviour. We also fitted an
ARMA(2,2)-GARCH(1,3) model to the log returns of Bitcoin, which allows for an
accurate value-at-risk prediction. Furthermore, the t-distribution is the best fitting
standard distribution to the log returns of several cryptocurrencies, this proves that
cryptocurrencies have fat tails and high peaks.

References

Alexander, C. and Dakos, M. (2020). A critical investigation of cryptocurrency data
and analysis. Quantitative Finance, 20(2):173-188.

Bacon, C. (2008). Practical Portfolio Performance Measurement and Attribution, 2nd
Edition, volume 546. John Wiley & Sons.

Bartels, R. (1982). The rank version of von neumann’s ratio test for randomness.
Journal of the American Statistical Association, 77(377):40-46.

Blockgeeks (2018). What is litecoin? the most comprehensive guide ever! https:
//blockgeeks.com/guides/litecoin/.

BlockGeeks (2019). What is cryptocurrency: Everything you must need to know!
https://blockgeeks.com/guides/what-is-cryptocurrency/.

30



Broock, W. A., Scheinkman, J. A., Dechert, W. D., and LeBaron, B. (1996). A
test for independence based on the correlation dimension. FEconometric reviews,
15(3):197-235.

Burniske, C. and White, A. (2017). Bitcoin: Ringing the bell for a new asset class.
Technical report, ARK invest.

Buterin, V. et al. (2014). A next-generation smart contract and decentralized appli-
cation platform. white paper, 3(37).

Choi, I. (1999). Testing the random walk hypothesis for real exchange rates. Journal
of Applied Econometrics, 14(3):293-308.

Coinmarketcap (2020). Market capitalisation of cryptocurrencies. https://
coinmarketcap.com/.

Dominguez, M. A. and Lobato, I. N. (2003). Testing the martingale difference hy-
pothesis. Econometric Reviews, 22(4):351-377.

Kahan, M. and Rock, E. (2008). The hanging chads of corporate voting. Georgetown
Law Journal, 96(4):1227-1281.

Kenton, W. (2018). Flash crash. https://www.investopedia.com/terms/f/
flash-crash.asp.

Malkiel, B. G. and Fama, E. F. (1970). Efficient capital markets: A review of theory
and empirical work. The journal of Finance, 25(2):383-417.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Technical
report, bitcoin.org.

SFox (2019). https://blog.sfox.com/bitcoin-flash-crash-short-history-cbcb0débc6as.
Urquhart, A. (2016). The inefficiency of bitcoin. Fconomics Letters, 148:80-82.

Van der Auwera, E., Schoutens, W., Giudici, M. P., and Alessi, L. (2020). Financial

Risk Management for Cryptocurrencies. Springer.

Wald, A. and Wolfowitz, J. (1940). On a test whether two samples are from the same
population. The Annals of Mathematical Statistics, 11(2):147-162.

Wei, W. C. (2018). Liquidity and market efficiency in cryptocurrencies. Economics
Letters, 168:21-24.

31



