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Abstract

We propose a multivariate hidden Markov model to explain the price evolution

of the major cryptocurrencies. We model jointly the daily log-returns of Bitcoin,

Ethereum, Ripple, Litecoin, and Bitcoin Cash. The observed log-returns are as-

sumed to be correlated according to a variance-covariance matrix conditionally on a

latent Markov process having a finite number of states. For the purpose of compar-

ing states according to their volatility we estimate the specific variance-covariance

matrix of each state. Maximum likelihood estimation of the model parameters is car-

ried out by the Expectation-Maximization algorithm. The hidden states represent

different phases of the market that are identified according to estimated expected

values of the log-returns and to the estimated volatility. We reach interesting results

in detecting these phases of the market and the implied transition dynamics. We

also find evidence of structural medium term trend in the correlation structure of

Bitcoin with the other cryptocurrencies.
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1 Introduction

Following the seminal paper of Satoshi Nakamoto (Satoshi, 2008) and the creation of the

Bitcoin network in 2009, an increasing number of crypto-assets have appeared. Almost

all are of little interest being just clones of the first without any real functional innovation

and/or trading liquidity. A few exceptions exist that have become relevant enough to

be considered as investable assets. Therefore, crypto-assets time-series nowadays consist

of multidimensional and complex data and these assets represent the most volatile and

challenging financial market (Borri, 2019).

We aim to monitor financial asset price series for the main cryptocurrencies by us-

ing a popular statistical and unsupervised machine learning method that is based on a

multivariate Hidden Markov Model (HMM); see Cappé et al. (1989), Mamon and Elliott

(2007), and Zucchini et al. (2017) for details on the model in the context of time-series

data and Bartolucci et al. (2013) in the context of longitudinal data. The HMM may

be cast into the literature of finite mixture models (McLachlan and Peel, 2000), as it

may be seen as a mixture model with a particular dependence structure across variables

referred to different time points. The use of this approach is motivated by the fact that

the HMM provides a flexible framework for many financial applications and it allows us

to incorporate stochastic volatility in a rather simple form. A comparison with stochastic

volatility models has been proposed by Genon-Catalot et al. (2000). From the pioneering

work of Akaike (1998) showing that the ARMA process can be represented by a Marko-

vian structure, many works have been proposed in the literature. Hamilton (1989), for

example, proposed a model where the latent regime follows a Markov process, and several

articles appeared more recently in this field; see, among others, Rossi and Gallo (2006),

Mamon and Elliott (2007), Langrock et al. (2012), De Angelis and Paas (2013), Giudici

and Abu Hashish (2020), and Lin et al. (2020).

In order to select the data for our application, we avoid going into the debate on

the representativeness of the different cryptocurrencies. More specifically we focus on

the market data referred to five cryptocurrencies: Bitcoin, Ethereum, Ripple, Litecoin,

and Bitcoin Cash. The market is ruled by Bitcoin but it is in continuous and very fast
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evolution. For example Trimborn and Härdle (2018) proposed a dynamic mechanism of

composition for the construction of an overall index; in other cases the choice of the sample

is dictated by specific objectives such as the description of the technological evolution as

in Wang and Vergne (2017). In our applicative example we then follow the classical

principles based on volumes and capitalization of selected crypto-assets considering those

currently accounting for more than 90% of market capitalization and transaction volumes.

Unlike the prevailing literature, in which applications of switching models are focused

exclusively on the estimation and prediction of volatility and consider the expected log-

returns as unpredictable parameters (Ang and Bekaert, 2002), we proceed in line with

De Angelis and Paas (2013) sharing the idea of also modeling the conditional means

of the time-series. Furthermore, we model the log-returns of crypto-assets taking into

account their correlation structure. An accurate evaluation of the conditional means

might improve time-series classification. Stable periods, crises, and financial bubbles

differ significantly for mean returns and structural levels of covariance.

We employ a multivariate HMM to account for the daily log-returns of the five men-

tioned cryptocurrencies. The reason for considering multiple time-series jointly instead of

a single series (Huang et al., 2019) is that there are sideway movements in the long-term

trends and we aim to identify actual trend change signals in the market. We assume that

the daily log-return of each crypto is generated by a specific probabilistic distribution

associated to the hidden state. The Expectation-Maximization (EM) algorithm (Baum

et al., 1970; Dempster et al., 1977) is employed for the maximum likelihood estimation

of the model parameters. The conditional distributions of the observed log-returns for

various states of the hidden variables are taken from the Gaussian family with different

means, variances, and covariances. Using the market prices collected over a three-year

time period from August 2, 2017, to February 27, 2020, we identify suitable states repre-

senting relevant phases of the market. We predict the a posteriori most likely sequence of

hidden states obtained through the so-called decoding based on the estimated maximum

posterior probabilities to visit every state.

The remainder of the paper is organized as follows. In Section 2 we define the notation
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and the quantities of interest for the proposed HMM and we illustrate the maximum like-

lihood estimation via the Expectation-Maximization algorithm. In Section 3 we describe

the data and the reference markets. In Section 4 we show the results of our application.

Finally, Section 5 provides main conclusions.

2 Proposed model

We consider a time-series yt, t = 1, 2, . . ., where each element ytj, with j = 1, . . . , r,

corresponds to the log-return of asset j among those considered. We will use yt to denote

the random vector at time t of one its realizations, in a way that will be clear from the

context; the same convention will be applied to scalar random variables. In the following,

we first review the HMM assumptions for our specific formulation and then we outline

the steps of the EM algorithm for its estimation.

2.1 HMM assumptions

The main assumption of the HMM is that the random vectors y1,y2, . . . are conditionally

independent given a hidden process u1, u2, . . . that follows a Markov chain with k hidden

states, labelled from 1 to k. The model includes two different sub-models, named as

measurement model and structural model, which are described in more detail in the

following.

The measurement model corresponds to the conditional distribution of every vector

yt given the underlying variable ut, t = 1, 2, . . .. In this regard, we assume a multivariate

Gaussian distribution for the overall log-returns of each cryptocurrency, that is,

yt|ut = u ∼ Nr(µu,Σu),

where µu and Σu are, for hidden state u, the specific mean vector and variance-covariance

matrix, respectively. Obviously, the conditional means in µu define the expected log-

return when the underlying chain is in state u, while the elements of Σu provide measures

of volatility of each asset and correlation between pairs of asset. As will be clear in the

following, different constraints may be conceived on these matrices, among which the
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main is that of homoschedasticity: Σ = Σu, u = 1, . . . , k.

The above assumptions imply that the conditional distribution of the time-series

y1,y2, . . . given the sequence of hidden states may be expressed as

f(y1,y2, . . . |u1, u2, . . .) =
∏
t

φ(yt;µut
,Σut),

where, in general, φ(·; ·, ·) denotes the density of the multivariate Gaussian distribution,

in our case of dimension r, with a certain mean vector and variance-covariance matrix.

The structural model for the distribution of the latent Markov process is based on

initial and transition probabilities. These parameters are defined as

λu = p(u1 = u), u = 1, . . . k,

and

πv|u = p(ut = v|ut−1 = u), t = 2, . . . , u, v = 1, . . . , k,

and are collected in the initial probability vector λ = (λ1, . . . , λk)′ and the transition

matrix

Π =


π1|1 · · · π1|k

...
. . .

...

πk|1 · · · πk|k

 .

Consequently, we can easily obtain the probability of a sequence of hidden states u1, u2, . . .

as

p(u1, u2, . . .) = λu1

∏
t≥2

πut|ut−1 .

Joint together, the measurement and the structural model implies that the manifest

distribution of time-series has the following density function:

f(y1,y2, . . .) =
∑

u1,u2,...

p(u1, u2, . . .)f(y1,y2, . . . |u1, u2, . . .)

=
∑
u1

πu1φ(y1;µu1
,Σu1)

∑
u2

πu2|u1φ(y2;µu2
,Σu2) · · · ,

which, in practice, is computed by a forward recursion (Baum et al., 1970; Welch, 2003).
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This recursion requires a number of operations linearly increasing with the number of

observation times because it exploits the previous factorization.

2.2 Maximum likelihood estimation

With reference to an observed time-series of log-returns y1,y2, . . ., the HMM log-likelihood

function is defined as

`(θ) = log f(y1,y2, . . .),

where θ is the vector of all model parameters, that is, µu, Σu, u = 1, . . . , k, λ, and Π.

By maximizing `(θ) we obtain estimates of these parameters and, for this aim, we employ

the EM algorithm.

The EM algorithm alternates two steps until convergence in `(θ) and is based on the

so-called complete-data log-likelihood, corresponding to the log-likelihood that could be

computed also knowing the hidden states at every time occasion. This function, denoted

by `∗(θ), may be decomposed as the sum of three components that may be maximized

separately, which are defined as

`∗1(µ1, . . . ,µk,Σ1, . . . ,Σk) =
∑
t

∑
u

wtu log φ(yt|µu,Σu)

= −1

2

∑
t

∑
u

wtu[log(|2πΣu|) + (yt − µu)′Σ−1u (yt − µu)], (1)

`∗2(λ) =
∑
u

w1u log πu, (2)

`∗3(Π) =
∑
t≥2

∑
u

∑
v

ztuv log πv|u, (3)

where wtu = I(ut = u) is a dummy variable equal to 1 if the hidden process is in state u

at time t and to 0 otherwise and ztuv = I(ut−1 = u, ut = v) = zt−1,uztv is the indicator

variable for the transition from state u to state v at time occasion t.

The two steps of the EM algorithm are:

• E-step: it computes the posterior expected value of each indicator variable wtu,

t = 1, 2, . . ., u = 1, . . . , k, and ztuv, t = 2, . . ., u, v = 1, . . . , k, given the observed
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data. These expected values correspond to

ŵtu = p(ut|y1,y2, . . .), (4)

ẑtuv = p(ut−1 = u, ut = v|y1,y2, . . .), (5)

and their computation is performed by suitable back-forward recursions (Baum

et al., 1970; Welch, 2003).

• M-step: the expected complete data log-likelihood is maximized with respect to

the model parameters; this function is given by the sum of functions (1)-(3), once

the indicator variables have been substituted by their expected values defined in

equations (4) and (5). The parameters in the measurement model are then updated

in a simple way as

µu =
1∑
t ŵtu

∑
t

ŵtuyt,

Σu =
1∑
t ŵtu

∑
t

ŵtu(yt − µu)(yt − µu)′,

for u = 1, . . . , k. Under the constraint of homoschedasticity, the latter is substituted

by

Σ =
1

T

∑
t

∑
u

ŵtu(yt − µu)(yt − µu)′,

with T being the number of observation times. Regarding the parameters in the

structural model, we simply have

πu = ẑ1u, u = 1, . . . , k,

πv|u =
1∑

t≥2 ŵt−1,u

∑
t≥2

ẑtuv, u, v = 1, . . . , k.

The overall vector of estimates obtained at convergence is denoted by θ̂.

Since the EM algorithm may converge to a local maximum not corresponding to

the global maximum, common initialization strategies involve a multi-start rule from

appropriate deterministic and random starting values. Deterministic starting values of
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the parameters of the measurement model, µu and Σu, u = 1, . . . , k, are defined on the

basis of the descriptive statistics (mean vector and variance-covariance matrix) of the

observed log-returns. The starting values for the initial probabilities πu are chosen as

1/k, for u = 1, . . . , k, whereas for the transition probabilities we adopt the following rule:

πv|u = (h+ 1)/(h+ k) when v = u and πv|u = 1/(h+ k) when v 6= u, where h is a suitable

positive constant.

The random starting rule is instead based on values drawn from a multivariate Gaus-

sian distribution for µu, u = 1, . . . , k, and on suitable normalized random numbers drawn

from a uniform distribution between 0 and 1 for both initial and transition probabilities.

The starting values for the variance-covariance matrices are again based on their sample

counterpart.

An important aspect concerns the model selection in terms of the number of hidden

states. When there are not substantial reasons to use a predefined number of states, we

rely on the Bayesian Information Criterion (BIC; Schwarz, 1978), which is based on the

following index

BICk = −2ˆ̀
k + log(T )#par, (6)

where ˆ̀
k denotes the maximum of the log-likelihood of the model with k states and

#par denotes the number of free parameters equal to k[r + r(r + 1)/2] + k2 − 1 for the

heteroschedastic model and to kr+ r(r+ 1)/2 +k2−1 for the homoschedastic one. Based

on this criterion, we estimate a series of HMMs for increasing value k and we select the

number of hidden states corresponding to the minimum value of the BIC index.

We can predict the most likely sequence of hidden states, through the so-called local

decoding, but we can also use the global decoding that may be implemented through the

Viterbi algorithm (Viterbi, 1967; Juang and Rabiner, 1991). Computational tools required

for the estimation are available upon request from the authors. They are implemented by

adapting suitable functions of the R package LMest (Bartolucci et al., 2017, 2020).
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3 Application

Due to the lack of regulation and established best-practices, in the crypto-asset market

it is quite common to have manipulated asset prices and trading volumes. For these

reasons suitable criteria must be used to select crypto-assets for quantitative analyses.

Approaches based on the so-called market capitalization are unreliable because it is not

easy to define the real free-floating capital for every crypto-asset. Descriptive statistics

on the markets are available, but from an economic point of view they are generally not

relevant. In fact, due to the anonymity/pseudonymity of the blockchain protocol it is

very hard to determine the amount of capital lost forever, making the calculations of the

actual capital available for trading almost always impossible.

The adopted criteria to select the cryptocurrencies for our HMM application are same

underlying the Crypto Asset Lab Index (to be published in 2021); each crypto-assets

must:

• be a scarce digital bearer asset that cannot be duplicated and it is cryptographically

secured;

• have a value that is not pegged to any other asset or currency;

• must be traded on at least two reliable exchanges1;

• have no more than 80% of its combined 90-day trading volume on a single reliable

exchange;

• be actively traded on reliable exchanges against traditional fiat currencies, stable-

coins (i.e., crypto-assets pegged to fiat currencies), Bitcoin, or Ethereum.

1An exchange is reliable when it:

– has not been exposed as publishing fake or inflated trading volumes;

– is registered and has obtained the license to operate in its jurisdiction;

– provides open and reliable functioning API;

– applies trading fees.
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Taking the above features into consideration we limited our analysis to the following

cryptocurrencies: Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Litecoin (LTC), and

Bitcoin Cash (BCH). For the seek of comparability on the liquidity side, our analysis

focuses on a recent time span of three years, accounting for the more recent introduction

and development of some selected cryptocurrencies, in particular XRP and LTC.

The data are provided by the Crypto Currency Lab® and are referred to 940 daily

quotes over a three-year period from August 2, 2017, to February, 27, 20202. In what

follows we show some descriptive statistics of the five time-series log-returns

ytj = log(xt+1,j/xtj), j = 1, . . . , r, t = 1, . . . , T,

with xtj denoting the closing price on day t of asset j. Then we focus on the HMM

estimation. Note that in this way we dispose of a series of T = 939 log-returns for r = 5

cryptocurrencies.

Figure 1 shows the BTC prices along with the daily log-returns for the whole period of

observation. We notice the high level of volatility as well the clustering phenomena also

typical of other financial assets. From the chart it is immediate to recognize two periods

of sharp rise in price, at the end of 2017 and in the mid-2019, together with a central

period with less volatility, but affected by a sudden collapse in November 2018. Figure

2 represents the daily log-returns of the five cryptocurrencies, highlighting the volatility

characteristics common in the crypto-asset market.

Table 1 reports the observed variance-covariance matrix, while Table 2 reports the

observed correlations and partial correlations. The correlations are in almost all cases

above 0.5, and very high for the pair BCH-ETH. The correlation structure, however,

is not so obvious to interpret in terms of partial correlation, suggesting that the BTC

dominance does not necessarily results in a unique co-moving driver.

2The data comes from a selection of 8 exchanges out of 81 available (BitFlyer, BitStamp, Bittrex, Coin-
base, Gemini, itBit, Kraken, Poloniex). The cryptocurrency market is affected by a marked phenomenon
of volume manipulation aimed at attracting customers from the stock exchanges. We have followed an

exclusion criteria based on manipulation, also chosen by the Crypto Asset Lab
®

for the design of its
index, and similar to that of Bitwise submitted to the SEC (see: https://www.sec.gov/comments/

sr-nysearca-2019-01/srnysearca201901-5164833-183434.pdf) that further excludes BitFinex and
Binance.
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Figure 1: Daily time-series of prices and log-returns of the BTC cryptocurrency (complete
observations are referred to the period from August 2, 2017, to February 27, 2020).

Table 1: Observed variance-covariance matrix of the five cryptocurrencies.

BTC ETH XRP LTC BCH
BTC 0.15
ETH 0.13 0.38
XRP 0.09 0.23 0.28
LTC 0.16 0.29 0.21 0.29
BCH 0.19 0.45 0.27 0.35 0.61

4 Results

The proposed HMM model described above is estimated through the procedure presented

in Section 2.2; for the sake of brevity, results are limited to the final selected model. The

order (number of states, k) of the hidden distribution is selected according of the BIC

(Schwarz, 1978) based on expression (6). The model is estimated for a number of hidden

states ranging from 1 to 6 and the results are displayed in Table 3. The model selection

strategy accounts for the multimodality of the likelihood function by using different sets

of starting values for each run of the EM algorithm.

According to the results showed in Table 3, the best model corresponds to the het-

eroschedastic HMM with k = 5 hidden states with specific mean vectors and variance-
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Figure 2: Daily time-series of log-returns of the BTC, ETH, XRP, LTC, BCH cryp-
tocurrencies based on closing prices (complete observations are referred to the period from
August 2, 2017, to February 27, 2020).
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covariance matrices.

Table 2: Observed correlation (left panel) and partial correlation (right panel) matrices of
the five cryptocurrencies.

BTC ETH XRP LTC BCH BTC ETH XRP LTC BCH
BTC 1.00 1.00
ETH 0.55 1.00 -0.38 1.00
XRP 0.44 0.71 1.00 -0.16 0.14 1.00
LTC 0.74 0.86 0.73 1.00 0.63 0.46 0.37 1.00
BCH 0.62 0.94 0.66 0.82 1.00 0.34 0.82 -0.04 -0.12 1.00

Table 3: Results from the fitting of the multivariate HMMs to the daily log-returns of the
BTC, ETH, XRP, LTC, BCH cryptocurrencies for increasing number of hidden states
(k).

k log-likelihood #par BIC
1 7,785.46 15 -15,468.25
2 9,044.87 43 -17,795.41
3 9,334.88 68 -18,204.31
4 9,455.30 95 -18,260.35
5 9,565.06 124 -18,281.36
6 9,667.93 155 -18,274.90

4.1 HMM with five hidden states

We show the estimated expected log-returns given each state in Table 4. They represent

the occurrence of a variety of situations happening on the market. According to these

estimates, there are three negative regimes (1, 2, 3) and two positive regimes (4, 5). The

second state, however, corresponds to cryptocurrency prices manifesting signs of stability,

although the prevailing sign is negative.

From Table 5, reporting the estimated conditional variances and correlations, some

interesting results emerge. First of all the correlations of BTC with the other cryptos

are quite high and positive for the first three states having mainly negative or stable

expected log-returns. On the other hand, the correlations for states 4 and 5 are lower

and correspond to a more idiosyncratic behavior of the cryptos. It is interesting to note
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Table 4: Estimated expected log-returns for the HMM with k = 5 hidden states.

1 2 3 4 5
BTC -0.0057 0.0054 -0.0013 0.0173 0.0159
ETH -0.0044 -0.0016 -0.0020 0.0175 0.0126
XRP -0.0067 -0.0051 -0.0039 0.0007 0.0629
LTC -0.0090 0.0029 -0.0032 0.0121 0.0398
BCH -0.0091 -0.0060 -0.0037 0.0634 -0.0016

average -0.0070 -0.0009 -0.0028 0.0222 0.0259

that, in state 2, the correlation between BTC and XRP is high (0.68) but the partial

correlation is low and negative (-0.18). Something similar happens between BTC and

LTC, indicating that in this state of greater stability the dynamics of cryptocurrency are

more mixed. In addition, in terms of volatility, it is clear that state 3 is the most volatile.

If we therefore refer to the levels of log-returns in Table 4, states 1 and 3 are both marked

by negative log-returns, but with a very different level of risk. It turns also out that state

1 is the only one characterized by significant falls of price and a marked volatility, which is

typical of market crashes. We can therefore assume that also state 3, along with states 4

and 5, even if characterized by negative log-returns, represents a phase of relative stability

of the prices as state 2.

Table 6 shows the estimated matrix of the transition probabilities among states. We

remark that the highest persistence is estimated for states 2, 3, and 4. On the other

hand, regimes 1 and especially 5 are less persistent. There is a quite high probability

to transit from each state to the first meaning that in each asset take profit positions

are frequent. As it stands, the first state can be considered as a “center of gravity” in

terms of transition probability. Concerning the highest estimated transition probability

from the less persistent state 5 to state 1 we notice that this result is not surprising, since

considering state 5 as representative of main markedly positive log-returns, this transition

can be read as the typical pull back following a substantial price increase.

Figure 3 illustrates the estimated posterior probabilities of being in latent state u,

with u = 1, . . . , k, at time t, with t = 1, . . . , T , conditional on the observed time-series.

Through these probabilities we are able to characterize the assets along time at different
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market phases. Considering the trend line imposed on the plot and created by a smoothed

local regression we notice an increasing tendency for state 3 and a decreasing tendency of

states 4 and 5 over time. Moreover, apart for few exceptions there are not stable periods.

Table 5: Estimated conditional correlations (lower triangle), variances (in bold, in diag-
onal) and partial correlations given all remaining variables (in italic, upper triangle) for
each state of the HMM with k = 5 hidden states.

State 1 BTC ETH XPR LTC BCH
BTC 0.0019 -0.0404 0.0722 0.5347 0.1967
ETH 0.3554 0.0028 0.1060 0.0805 0.0561
XRP 0.7705 0.3875 0.0035 0.3919 0.0305
LTC 0.9058 0.4016 0.8306 0.0033 0.5011
BCH 0.8501 0.3823 0.7581 0.8977 0.0056

State 2
BTC 0.0017 0.3531 -0.1846 -0.1072 0.5238
ETH 0.7799 0.0015 0.3110 0.2513 0.1188
XRP 0.6822 0.8006 0.0013 0.0845 0.5324
LTC 0.6095 0.7265 0.7079 0.0029 0.2916
BCH 0.8254 0.8333 0.8579 0.7547 0.0016

State 3
BTC 0.0002 0.2714 0.2234 0.2655 0.2789
ETH 0.6332 0.0003 0.1702 0.0858 0.0227
XRP 0.7323 0.5937 0.0003 0.3167 0.2131
LTC 0.7559 0.5792 0.7562 0.0006 0.3488
BCH 0.7394 0.5439 0.7179 0.7636 0.0007

State 4
BTC 0.0023 -0.1527 0.3547 0.1877 -0.3043
ETH 0.1163 0.0014 0.1897 0.0985 -0.0655
XRP 0.6215 0.3303 0.0021 0.6565 0.2106
LTC 0.5977 0.3083 0.8058 0.0028 -0.0709
BCH -0.2477 -0.0279 0.0024 -0.0802 0.0221

State 5
BTC 0.0061 0.1235 -0.0930 0.2351 0.3836
ETH 0.2951 0.0039 -0.0205 0.1710 0.0429
XRP 0.2155 0.1047 0.0255 0.0380 0.3890
LTC 0.5324 0.3261 0.3044 0.0163 0.3932
BCH 0.5887 0.2729 0.4752 0.6259 0.0136

Figure 4 depicts the decoded states across all the days. It is based on the posterior

probabilities showed in Figure 3. We estimate that the hidden state 1 is visited the
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36.85%, state 2 the 16.19%, state 3 the 31.84%, state 4 the 8.41%, and state 5 the 6.71%

of the T = 939 days. Therefore, states 4 and 5 occur in a small fraction of time occasions,

especially before the second half of 2009 and also in single days.

Table 6: Estimated transition probabilities for the HMM with k = 5 hidden states (in bold
elements greater than 0.1).

1 2 3 4 5
1 0.6879 0.0548 0.1722 0.0175 0.0676
2 0.1445 0.7145 0.1190 0.0220 0.0000
3 0.2035 0.0825 0.7140 0.0000 0.0000
4 0.1137 0.0196 0.0000 0.7757 0.0909
5 0.2441 0.0791 0.0010 0.1079 0.5678

On the basis of Figures 3 and 4 some conclusions can be drawn. The recent evolution

of the main cryptocurrencies is characterized by a prevalence towards phases of greater

stability corresponding to states 2 and 3, and an evident reduction of episodes of marked

price increase corresponding to market phases detected by states 4 and 5. These states

are indeed the representation of another typical phenomenon of the crypto-assets namely,

speculative bubbles. The existence of bubbles in the price dynamics of the BTC and other

crypto-assets is a well-known feature of the evolution of these markets and contributed

substantially to the high log-returns reported from 2009 to date. Such periods, intended

as rapid price accelerations with an exponential or even explosive behavior, are one of the

primary concerns for investors due to the risk posed by the subsequent bubble burst with

extremes losses. Recently, Bouri et al. (2019) and Agosto and Cafferata (2020) focused

on the links between crypto-assets in such periods of extreme rise and drop of prices,

showing a relevant interconnection between cryptos during the price increase as well in

the bubble burst. Perhaps the most relevant and widespread bubble is that of the final

quarter of 2017, which quickly saw the Bitcoin reaching a value of $10,000 and shortly

thereafter peaks at more than $20,000. The estimated posterior probabilities presented

in Figure 3 are encouraging in detecting a trend of sharp decrease of these episodes that

poses a serious limit for retail and institutional investors in considering cryptocurrencies

as an investable asset.
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Figure 3: Predicted posterior probabilities of the five states of the HMM with overimposed
smoothed local regression lines (in blue).
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Figure 4: Five decoded states for the estimated HMM.

Figures 7-11 reported in the Appendix depict the observed log-returns, the predicted

averages, and standard deviations over the time period for each cryptocurrency. The

multivariate HMM with five states in our intention is not meant to provide unambiguous

univariate predictions of log-returns or volatility, but the results are truly comforting.

In particular, for Ripple, Litecoin, and Bitcoin Cash the model is able to timely detect

regimes of high or low returns and volatilities.

In Figure 5 we show the realized log-returns of BTC along with the predicted values

of the estimated HMM with k = 5 hidden states. We highlight the quite high adherence

between them confirming that the model is able to account for a reverse trend in a fast

way and its performance is good in both bull and bear market phases.

Finally, Figure 6 shows the estimated correlations of the BTC with all the other cryp-

tocurrencies namely, XRP, ETH, LTC, BCH, along with the estimated trend according

to a smooth local regression. A clear contribution of a multivariate model is to show if

there are some structural trends in the interconnection between the assets. This aspect

has received considerable attention in recent researches. Different studies investigated

interconnectedness, co-movements, and volatility spillovers between cryptocurrencies ap-

plying different approaches; see Corbet et al. (2018), Chen et al. (2020), and Giudici and
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Figure 5: Observed (gray lines) and predicted (blue lines) log-returns for the BTC of the
HMM with k = 5 hidden states.

Polinesi (2019) for a network analysis and Yi et al. (2018) and Giudici and Pagnottoni

(2019, 2020) for a VAR analysis.

Our results confirm a medium term trend of greater correlation relative to BTC with

the other cryptocurrencies. This conclusion is less evident only for Litecoin. An expla-

nation of this evidence is the rising of a systemic risk for the whole market as it is more

mature and liquid as in equity markets. Another explanation could be the rise of stable-

coins pair dominance during 2018 concurring to the overall decline in the contribution of

BTC pairs to total industry trade volume, with a pressure to a stronger link to USD of

all cryptos and a subsequent increase in correlation.

5 Conclusions

We propose a multivariate Hidden Markov Model (HMM) to analyze log-returns of the

main five cryptocurrencies: Bitcoin, Ethereum, Ripple, Litecoin, and Bitcoin cash. The

narrow universe we selected fulfills the intention to concentrate on the more reliable,

liquid, and less manipulated crypto-assets in the market. The choice of recent three

years of data followed similar criteria of homogeneity between time-series especially with

reference to the liquidity profile. The advantage of employing an HMM, as that proposed

in this paper that includes state-specific expected log-returns, lies on the use of the surplus

of information available in comparison to traditional regime-switching models that focus

exclusively on volatility.
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Figure 6: Predicted correlations between BTC and the other cryptocurrencies under the
HMM with k = 5 hidden states with overimposed smooth trend according to a local regres-
sion (blue line).

According to the Bayesian Information Criterion, we select a model with five hidden

states. Among them, states 2 and 3 describe more stable phases of the market that

account for the 45% of the time, whereas state 1 represents a negative phase of the

market featuring negative log-returns and high volatility, and states 4 and 5 are related

to phases of a marked rise in price, and represent only the 8.41% and 6.71% of the overall

time period.

From the estimated posterior probabilities and from the decoded states we can infer

a trend characterized by a prevalence towards phases of greater stability detected by

states 2 and 3, and an evident reduction of episodes of marked price increase detected

by states 4 and 5. We show that the model is also able to provide quite remarkable
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univariate predictions of log-returns and volatility for the future time occasions. Finally,

we spot a trend of increase of the market correlation from the predicted correlations of

the cryptocurrencies coupled to Bitcoin, coherent with the hypothesis of an increasing

systematic risk observed in more mature markets, but also with the induced stronger link

with the USD starting from 2018 due to the rise of stablecoins.

Appendix: additional figures
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Figure 7: Observed BTC log-returns (pink), predicted averages (green), and predicted
standard deviations (blue) under the HMM with k = 5 hidden states.
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Figure 8: Observed ETH log-returns (pink), predicted averages (green), and predicted
standard deviations (blue) under the HMM with k = 5 hidden states.
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Figure 9: Observed XPR log-returns (pink), predicted averages (green), and predicted
standard deviations (blue) under the HMM with k = 5 hidden states.
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Figure 10: Observed LTC log-returns (pink), predicted averages (green), and predicted
standard deviations (blue) under the HMM with k = 5 hidden states.
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Figure 11: Observed BCH log-returns (pink), predicted averages (green), and predicted
standard deviations (blue) under the HMM with k = 5 hidden states.
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