Data and Methodologie

Empirical Findings

Conclusion O

Bloggers and Bitcoin Prices: A Textual Machine Learning Analysis

Eric Ghysels UNC Chapel Hill

Joint with Giang Nguyen (Penn State) Donghwa Shin (UNC Chapel Hill) Zhe Wang (UNC Chapel Hill)

October 27, 2020

ヘロト 人間 とくほ とくほとう

Data and Methodologie

Empirical Findings

Conclusion O

Motivation

- Absence of traditional information intermediaries in the cryptocurrency market
 - In the stock market, sell-side analysts produce earning forecasts and recommend stocks based on both public (such as financial statements) and private information.
- Given the absence of reporting requirements in the cryptocurrency market, it is not clear
 - · Whether private information held by individuals have any values
 - · How to extract private information of the individuals
- We study a discussion forum specialized in the cryptocurrency market where anonymous individuals freely discuss their views using a state-of-the-art textual machine learning technique.

(日) (圖) (E) (E) (E)

Data and Methodologies

Empirical Findings

Conclusion

Growing popularity of BitcoinTalk initiated by Satoshi Nakamoto

- The forum has experienced a significant growth since its inception (at the same time as Bitcoin). More than 200,000 blogs per year recently.
- Importance of active bloggers
 - 10% (20%) of bloggers write 84% (91%) of overall posts.
 - The discussion forum is dominated by a small fraction of active bloggers.

Empirical Findings

Preview of empirical findings

- A traditional dictionary-based model is not useful to predict future returns.
- A machine learning-based model does not show predictability for daily aggregated posts.
- Importance of individual blogger-level modeling
 - Individual bloggers appear to have different writing styles (based on Jaccard distance)
 - Individual bloggers exhibit heterogeneity in predictability.
 - Interesting to observe that posts which get more comments from other bloggers exhibit poorer performance. → Implies the importance of understanding how the bloggers interact.

Data and Methodologies

Empirical Findings

Conclusion O

Literature

- Wisdom of Crowds (relatively new field in finance and economics)
 - Chen, De, Hu, and Hwang (RFS 2014): Study the predictability of stock opinion transmitted through social media (Seeking Alpha)
 - Budescu and Chen (MS 2015): Focus on how to aggregate dispersed opinions using weighted-average scheme.
 - Da and Huang (MS 2020): Study how individuals use public and private information in earning forecasts and its implication on predictability of group forecast. Encouraging individuals to use more of their private information increases the predictability of the group forecast.
- Unlike the previous literature, extracting the private information is much more challenging from unstructured data and there is no publicly available information in our study.
 - We overcome this barrier by using a state-of-the-art textual machine learning technique.

イロト 不聞 とくほど くほとう ほ

Data and Methodologies

Empirical Findings

Conclusion O

BitcoinTalk.org

- One of the oldest and the most famous online discussion forums
- Forum where people freely express their views on the prospect of the Bitcoin price
- We choose posts that contain the keywords, bitcoin or BTC, to exclude the posts that are irrelevant for the prediction of Bitcoin price.
- Kaiko
 - We obtain the prices of Bitcoin in USD in 11 reputable cryptocurrency exchanges.
 - We construct the volume-weighted average bitcoin price across these exchange.
 - Based on the volume-weighted average bitcoin price, we compute the returns for various horizons. (5 minutes - 90 days)

Data and Methodologies

Empirical Findings

Conclusion O

Dictionary-based approach

- Tone Measure based on Dictionary (Harvard psychosocial dictionary, Loughran-McDonald sentiment word lists)
 - "Bag of Words"
 - Tone of the article: weight of negative words (proportional or tf.idf)
 - Return-predictability based on the calculated tone
- Dictionary-dependent
- One dictionary for all (topics, authors, et al...)

Data and Methodologies

Empirical Findings

Conclusion O

Machine learning (ML)-based approach

- Tone Measure based on Machine Learning (Ke, Kelly & Xiu, KKX)
 - Sentiment word counts in article i follow a mixture multinomial distribution:

 $d_{i,[S]} \sim Multinomial(s_i, p_iO_+ + (1 - p_i)O_-)$

Sentiment topics O_+/O_- describes the expected word frequencies in a maximally positive/negative sentiment article.

• Estimate $O = [O_+ O_-]$ using a two-topic model:

$$\mathbb{E}\tilde{D} = OW$$

 \hat{D} is the set of sentiment-charged words. W is the sentiment score matrix.

イロト イロト イヨト イヨト 二日

Data and Methodologies 0000000

Machine learning (ML)-based approach

Tone Measure based on Machine Learning (Ke, Kelly & Xiu, KKX)

• Construct the sentiment-charged words set S (used to estimate \tilde{D}):

	Г	Article 1	Article 2	 Article n
	word 1	$f_{1,1}$	$f_{1,2}$	 $f_{1,n}$
S =	word 2	$f_{2,1}$	$f_{2,2}$	 f _{2,n}
0				
	word j	$f_{j,1}$	$f_{j,2}$	 f _{j,n}

Construct the sentiment score:

		Article 1	Article 2	 Article n
	W =	<i>p</i> 1	p_2	 p_n
		$1 - p_1$	$1 - p_2$	 $1 - p_n$
where $p_i = \frac{1}{2}$	rank of retu	rn(i) in all	returns	

n

(日) (圖) (E) (E) (E)

Empirical Findings

Machine learning (ML)-based approach

• Tone Measure based on Machine Learning (Ke, Kelly & Xiu, KKX)

Construct S with selection:

$$\hat{S} = \{j : f_j \ge 1/2 + \alpha, \text{ or } f_j \le 1/2 - \alpha\} \cap \{j : k_j \ge \kappa\}$$

where:

 f_j is the frequency with which word j co-occurs with a positive return:

$$f_j = \frac{\# artitcles including word j AND having sgn(return) = 1}{\# articles including word j}$$

 k_j is the count of articles including word j (the denominator in f_j), and restrict the analysis to words for which $k_j > \kappa$.

• α and κ are hyper-parameters to be tuned.

<ロト<部ト<単ト<単ト<単ト<単ト<単ト<10/24

Data and Methodologies

Empirical Findings

Conclusion O

Machine learning (ML)-based approach

- Tone Measure based on Machine Learning (Ke, Kelly & Xiu, KKX)
 - · Scoring new articles through MLE with a penalty term:

$$\hat{p} = \underset{p \in [0,1]}{\arg \max} \{ \hat{s}^{-1} \sum_{j=1}^{\hat{s}} d_j log(p \hat{O}_{+,j} + (1-p) \hat{O}_{-,j}) + \lambda log(p(1-p)) \}$$

- \hat{s} is the total count of words from \hat{S} in the new article
- λ is a hyper-parameter to be tuned.
- Do not rely on specific dictionary
- Topic/author-specific

うてん 明 スポッスポッスラッム

Data and Methodologies

Empirical Findings

Conclusion O

Sample construction

- Testing period: 2017, 2018, 2019
- Training period: from 2014 to the beginning of testing year
- Sample: all posts containing the key words "btc" or "bitcoin" (case-insensitive)
- Return: 1/7/30/90 days since the time when the blog is published
- Drop blogs that do not have essential keywords (<5%)
- Top 10 bloggers are the most quoted bloggers during our sample period

Data and Methodologie

Empirical Findings

Predictability (Spearman rank correlation) of daily aggregate posts

	1 day	7 day
	return	return
Full	-0.018	-0.022
Top Decile	-0.053	-0.050
Bottom Decile	-0.034	-0.007

• KKX constructed based on daily aggregate posts does not show predictability.

Summary statistics - Individual bloggers

						# Words		
Blogger	# blogs (1)	Start date (2)	End date (3)	Average (4)	Stdev (5)	25 percentile (6)	Median (7)	75 percentile (8)
B1	978	16-Jul-2017	28-Jul-2019	74.7	68.3	23	52	120
B2	1024	26-Oct-2013	31-Jul-2019	57.6	46.9	27	46	72.25
B3	511	28-Jan-2014	31-Jul-2019	83.3	75.2	33	59	110
B4	371	16-Dec-2013	2-Aug-2019	41.6	53.4	15	28	48.5
B5	525	28-Sep-2014	1-Aug-2019	48.5	31.2	27	41	66
B6	596	8-Oct-2013	15-Jul-2019	58.6	61.8	20	39	74
B7	408	4-Dec-2013	25-Jul-2019	66.8	49.7	40	58	79
B8	242	9-Jan-2017	26-Jun-2019	72.3	95.4	21	40	87.5
B9	110	29-May-2016	15-Jul-2019	42.3	48.9	12	23	46
B10	184	9-Nov-2013	20-Jun-2019	55.4	44.7	25	42	69

- The average (median) # of words range from 41.6 (28) to 83.3 (59).
- Individual bloggers seem to have different writing styles in terms of average (median) # words.
- The length of blog posts are much shorter than newspaper articles or other social media posts (such as Seeking Alpha)

Data and Methodologie

Empirical Findings

Conclusion O

Word cloud

- An example of a word cloud of a blogger constructed based on KKX.
- Is there any difference between the word clouds of the different bloggers?

Comparison of Writing Styles: Jaccard Index

• Similarity between two word sets measured using Jaccard index:

$$J(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

- Positive words: *O*₊(*i*) > *O*₋(*i*)
- Negative words: O₊(*i*) < O_−(*i*)
- Writing style comparison: Jaccard index of the positive/negative word sets between two individuals

Empirical Findings

Different writing styles of individual bloggers

Panel A:	Panel A: Positive words									
Blogger	B1	B2	B3	B4	B5	B6	B7	B8	B8	B10
B1	1									
B2	0.101	1								
B3	0.122	0.172	1							
B4	0.116	0.135	0	1						
B5	0.118	0.139	0.158	0	1					
B6	0.124	0.153	0.178	0	0.158	1				
B7	0.113	0.148	0.178	0.162	0	0	1			
B8	0.101	0.114	0.149	0.177	0	0	0	1		
B9	0.045	0.056	0.057	0.064	0	0	0	0	1	
B10	0.087	0.125	0.126	0.148	0	0	0	0	0	1

- The above table presents the Jaccard index between word clouds of 10 bloggers. Jaccard index measures the similarity of word clouds.
- Individual bloggers appear to have different writing styles. Consistent with the poor performance of aggregate posts.

Data and Methodologies

Empirical Findings

Conclusion O

Different writing styles of individual bloggers

Panel B: Negative words

Blogger	B1	B2	B3	B4	B5	B6	B7	B8	B8	B10
B1	1									
B2	0.117	1								
B3	0.122	0.179	1							
B4	0.125	0.137	0	1						
B5	0.138	0.159	0.156	0	1					
B6	0.134	0.178	0.159	0	0.153	1				
B7	0.124	0.155	0.168	0.149	0	0	1			
B8	0.135	0.152	0.155	0.177	0	0	0	1		
B9	0.076	0.071	0.079	0.092	0	0	0	0	1	
B10	0.117	0.122	0.140	0.134	0	0	0	0	0	1

Empirical Findings

Predictability of individual bloggers

Blogger	1 day	7 day	30 day	90 day	# obs
	return	return	return	return	
B1	0.038	0.110(***)	0.168(***)	0.060(*)	868
B2	0.037	0.136(***)	0.105(**)	0.134(***)	512
B3	0.007	-0.033	0.037	0.200(***)	326
B4	0.042	0.034	0.032	0.101(*)	294
B5	0.029	-0.033	-0.103(*)	0.058	272
B6	0.106(*)	-0.033	-0.003	0.002	253
B7	-0.079	0.093	0.057	0.067	170
B8	-0.093	0.030	0.015	0.116	137
B9	-0.118	-0.035	0.430(***)	0.400(***)	66
B10	0.037	-0.078	-0.126	0.016	53

• Spearman Rank Correlation is presented.

• Heterogeneous predictability across different bloggers and horizons.

Horse race (KKX vs Dictionary-based approach)

Blogger		1 day			7 day	
	QPS _{KKX}	QPS _{Dictionary}	Δ Error(KKX-Dic)	QPS _{KKX}	QPS _{Dictionary}	Δ Error(KKX-Dic)
B1	0.592	0.701	-0.059(***)	0.692	0.708	-0.008
B2	0.500	0.528	-0.014(**)	0.499	0.513	-0.007
B3	0.501	0.557	-0.028(**)	0.535	0.609	-0.037(**)
B4	0.499	0.566	-0.033(*)	0.505	0.618	-0.056(***)
B5	0.500	0.558	-0.029(*)	0.496	0.547	-0.026(**)
Blogger		30 day	/		90 day	/
	QPS _{KKX}	QPS _{Dictionary}	Δ Error(KKX-Dic)	QPS _{KKX}	QPS _{Dictionary}	Δ Error(KKX-Dic)
B1	0.763	0.823	-0.030(***)	0.844	0.931	-0.044(***)
B2	0.491	0.540	-0.024(***)	0.505	0.55	-0.022(***)
B3	0.591	0.668	-0.039(***)	0.680	0.76	-0.040(***)
B4	0.488	0.540	-0.026(*)	0.389	0.397	-0.004
B5	0.494	0 / 199	-0.003	0.506	0.537	-0.015

• $QPS = \frac{1}{T} \sum 2 * (\hat{p} - p)^2$, quadratic probability score (Brier, 1950). Range [0,2]. 0 is perfect accuracy.

- ΔError: Diebold-Mariano test
- KKX produces more accurate forecast than the traditional dictionary-based approach.

Predictability and attentions

	In	Top Decile		Not I	Not In Top Decile			
Blogger	Correlation	p-value	# Blogs	Correlation	p-value	# Blogs		
B1	0.040	0.377	497	0.142(***)	0.005	386		
B2	0.050	0.624	99	0.160(***)	0.001	413		
B3	0.021	0.807	135	-0.090	0.213	192		
B4	-0.015	0.884	100	0.086	0.231	207		
B5	-0.077	0.537	67	-0.020	0.777	205		
B6	-0.127	0.366	53	-0.003	0.963	201		
B7	-0.029	0.860	40	0.136	0.122	130		
B8	-0.080	0.480	80	0.190	0.157	58		
B9	-0.021	0.932	29	-0.028	0.852	76		
B10	0.452	0.260	8	-0.110	0.470	45		

• 7 day return prediction

- It is puzzling to observe that when a blogger got more attention measured by the number of comments (replies), the predictability seems to be worse.
- Why? Need to further understand the feedback by other bloggers.
 - When do people leave comments?
 - Is there any asymmetry in leaving the comments?

Empirical Findings

Combine Probability Forecast

• Aggregation of probability forecasts from distinct sources with different information set (Ranjan and Gneiting, 2010).

$$p_t = H_{\alpha,\beta}(\sum w_i p_{i,t})$$

- *p_t* is the combined forecast
- *p*_{*i*,*t*} is forecast from source i
- $H_{\alpha,\beta}$ is a cumulative β distribution
- $\sum w_i = 1$
- Estimate parameters (w_i, α, β) by maximizing the following log likelihood function:

$$l(w_i, \alpha, \beta) = \sum y_t * log(p_t) + (1 - y_t) * log(1 - p_t)$$

where $y_t = 1$ if the future return is positive and 0 otherwise.

Empirical Findings

Combine KKX with Return-Driven Model

Blogger	7 day							
	QPS _{KKX}	QPS _{Ret}	Combined	Δ Error(Com-KKX)	∆Error(Com-Ret)			
B1	0.692	0.708	0.510	-0.091(***)	-0.099(***)			
B2	0.499	0.513	0.464	-0.018(*)	-0.025(**)			
B3	0.535	0.609	0.432	-0.052(***)	-0.089(***)			
B4	0.505	0.618	0.703	0.099(***)	0.042			
B5	0.496	0.547	0.495	-0.001	-0.026(*)			

Blogger	30 day								
	QPS _{KKX}	QPS _{Ret}	Combined	ΔError(Com-KKX)	∆Error(Com-Ret)				
B1	0.844	0.931	0.474	-0.185(***)	-0.228(***)				
B2	0.505	0.550	0.423	-0.041	-0.063(**)				
B3	0.680	0.760	0.473	-0.103(**)	-0.143(***)				
B4	0.389	0.397	0.692	0.152(***)	0.148(***)				
B5	0.506	0.537	0.488	-0.009	-0.025				

• Combine KKX with return-driven model improves the accuracy.

Empirical Findings

Conclusion

- A traditional dictionary-based model is not useful to predict future returns.
- A ML-based model does not show predictability for daily aggregated posts.
- Importance of individual blogger-level modeling
 - Individual bloggers appear to have different writing styles.
 - Individual bloggers exhibit heterogeneity in predictability.
 - Interesting to observe that posts which get more comments from other bloggers exhibit poorer performance.
- Future works
 - The feedbacks by other bloggers.
 - Can we aggregate the outcomes of the individual models to construct a better predictor? (Wisdom of Crowds)

(日) (圖) (E) (E) (E)