Does mining fuel bubbles? An experimental study on cryptocurrency markets

Marco Lambrecht ¹ Andis Sofianos² Yilong Xu³

2nd Crypto Asset Lab Conference Oct 27th, 2020

¹University of Heidelberg & Hanken School of Economics

²University of Heidelberg

³University of Heidelberg

Motivation

- high price volatility of cryptocurrencies
- contradicts intended use as a currency
- effects might spill over to other markets
- isolating and analysing the influence of mining (PoW) with real-world data contains too many confounds
- thus, we do so using a controlled lab setting

Bitcoin Mining

Mining Farm

Experimental Design

		Concentration				
	All Ha					
Asset Influx	Gift Mining	Gift-All Mining-All	Gift-Half Mining-Half			

- we invite students to the labs in Frankfurt and Heidelberg
- monetary incentives for each task
- 8 participants per market, 9 markets per treatment
- continuous double auction, 15 periods of trading
- simple asset: no dividends, single redemption value at the end of the experiment
- asset generation at (weakly) increasing cost over time in Mining treatments

Asset generation

Contrasting asset supply between experimental PoW implementation and Bitcoin:

Experimental asset supply over time.

Bitcoin supply (www.coindesk.com).

Literature

Gift vs. Mining

Smith et al. (2000): trading around FV Bostian et al. (2005): bubbles in flat FV settings, but with frequent dividends Saleh (2019), Hinzen et al. (2020): sluggish supply

All vs. Half

Jannsen et al. (2019), Tucker and Xu (2020): larger bubbles if endowments are asymmetric Weber and Camerer (1998): balanced portfolios

Note: Weitzel et al. (2020) show that experiments with students yield similar results as with financial professionals

Research Hypotheses

Hypothesis 1

Prices in Gift-All do not exhibit a pattern of bubbles and crashes.

Hypothesis 2

Prices in Gift-Half are higher than prices in Gift-All.

Hypothesis 3

Prices in Mining treatments are higher than prices in Gift treatments, exhibiting a pattern of bubbles and crashes.

Hypothesis 4

Prices in Mining-Half are higher than prices in Mining-All.

Prices across the four treatments

Median weighted average price per period

Bubble measure statistics

	Gift-All	Gift-All	Gift-Half	Mining-All	
	VS.	VS.	VS.	VS.	
	Gift-Half	Mining-All	Mining-Half	Mining-Half	
RAD	0.546	0.004	0.003	0.666	
RD	0.387	0.006	0.004	0.605	
CRASH	0.673	0.005	0.001	0.606	
SPREAD	0.340	0.006	0.000	0.136	

p-values of exact Mann-Whitney-U tests comparing bubble measures of different treatments (pairwise)

Effect of mining concentration

		Mining-All	Mining-Half	Mining-All vs. Mining-Half (M-W-U test)
RAD	First half	0.60	2.20	p=0.011
	Second half	1.33	0.81	p=0.436
RD	First half	0.47	2.20	p=0.008
	Second half	1.33	0.81	p=0.340

Exact Mann-Whitney-U tests of bubble measure RAD, comparing first half and second half of mining treatments.

Trading prices and asset generation costs

Median weighted average price and mining cost per period in Mining treatments

Order Book Analysis

Accepted trades - median ratio per treatment

Bid Ask Analysis

Median weighted average asks (left) and average bids (right) per treatment

Debriefing Survey Analysis

Do traders change their evaluation of the asset due to costly generation?

	Gift	Mining	Gift vs. Mining (M-W-U test)
own value	28	30	p=0.0668
market value	30	40	p=0.0036

Mann-Whitney-U tests of survey answers, comparing gift and mining treatments

	Miners	Non-Miners	Miners vs. Non-Miners (M-W-U test)
own value	29	30	p=0.2402
market value	30.5	40	p=0.7178

Mann-Whitney-U tests of survey answers, comparing role A and role B traders in Mining-Half

Conclusion

- generation of assets at increasing costs (as in PoW) contributes to price volatility and overpricing
- cryptocurrencies that are intended to be stable might need other mechanisms to ensure stability (PoS, StableCoins)
- further discussion: other mechanisms at play

Mining difficulty

Difficulty of Bitcoin mining over time

Cash to Asset Ratio

Average Cash to Asset Ratio in our treatments

Trading volumes

Average trading volume across the four treatments

Robustness

Median weighted average price per period of all but one session in all treatments, which yields eight graphs per treatment. We shade the area between the highest and lowest period prices per treatment, i.e. all eight graphs of a treatment lie within the shaded area of the respective treatment.

Bubble Measure Statistics

	Gift-All Gift-Ha		lalf	Mining-All		Mining-Half		
	median		median		median		median	
	mean (std.dev.)	mean (std.dev.)		mean (std.dev.)		mean (std.dev.)	
RAD	0.4 0.5	(0.5)	0.1 0.5	(0.8)	1.0 1.9	(1.9)	2.1 2.3	(1.5)
RD	0.4 0.4	(0.5)	0.1 0.5	(0.9)	1.0 1.9	(1.9)	2.0 2.2	(1.5)
RDMAX	1.0 0.9	(0.6)	0.3 0.9	(1.4)	3.6 7.7	(10.7)	3.6 6.1	(5.2)
AMP	0.8 0.7	(0.3)	0.3 0.6	(0.6)	3.8 7.9	(10.7)	3.2 5.6	(5.0)
CRASH	-0.5 -0.6	(0.6)	-0.3 -0.7	(0.9)	-2.9 -7.5	(11.3)	-4.0 -6.2	(5.4)
TURN	0.2 0.2	(0.1)	0.2 0.2	(0.1)	0.2 0.2	(0.1)	0.2 0.2	(0.1)
LQ	0.6 0.8	(0.7)	1.0 5.5	(13.9)	0.5 0.7	(0.6)	0.8 5.2	(12.8)
SR	20.9 20.4	(4.4)	19.3 21.1	(4.9)	17.1 16.3	(3.5)	22.1 21.9	(3.5)
SPREAD	0.2 0.3	(0.2)	0.1 0.2	(0.3)	0.5 1.4	(2.3)	1.2 1.5	(1.2)
VOLA	0.2 0.3	(0.3)	0.1 0.2	(0.1)	0.3 0.3	(0.2)	0.4 0.5	(0.3)

Summary statistics of bubble measures by treatment