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Abstract

Motivated by the ease of creation of blockchain-based digital currencies, in this paper I

allow an auctioneer to create a new token, commit to its supply, and then accept it as

a mean of payment. I consider a simple, private-value auction with risk-neutral bidders,

repeated twice. I show that the revenue equivalence holds, in the sense that the expected

two-period revenues are the same under all common auction formats, with tokens or with-

out tokens. However, depending on the monetary policy specified by the auctioneer, the

auction with tokens differs from the one without tokens in the time profile and the vari-

ance of the auctioneer’s revenues. For example, if the auctioneer commits to destroying all

tokens received as payment, then he will earn with probability 1 the expected two-periods

revenues at the beginning of the game. Hence, if the auctioneer is present biased or risk

averse, then the auction with tokens is strictly preferred to an auction without tokens

(otherwise, the two types of auctions are equivalent).
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1 Introduction

The study of auctions is among the most successful research lines in economics,
having produced both deep theoretical results, and also very practical and useful in-
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sights.1 This success was achieved by systematically studying auctions under a wide
variety of assumptions with respect to bidders’ valuations, information structure,
equilibrium concept, etc (Klemperer, 1999). Yet, a common assumption is that all
payments occur using fiat currency (for example, the USD). However, the recent
invention of blockchain allows anyone to create new digital tokens and to commit
to their supply.2 These tokens can be exchanged freely on the blockchain, and can
be (and often are) used as a mean of payment.

Motivated by the above observation, here I allow an auctioneer to specify an
auction format, and also to create new tokens. These tokens can be used as the
“internal currency” of the auction, in the sense that they are the sole mean of pay-
ment accepted by the auctioneer. I show that the revenue equivalence holds also
with tokens. Nonetheless, if the auction is repeated multiple times, by issuing to-
kens and specifying an appropriate monetary policy, the auctioneer can manipulate
the timing and variability of his earning. In some cases, he is able to eliminate all
risk and earn all revenues at the beginning of the game. Hence, if the auctioneer
is risk averse, the auction with tokens is preferred to the auction without tokens.
Importantly, if there is perfect contracting, the auction with tokens replicates in a
decentralized way the outcome of a standard auction with fiat currency in which the
auctioneer and bidders also sign a side contract. However, in the presence of con-
tracting frictions, the auction with tokens might be preferred to a standard auction
with a side agreement.

Formally, I study a sequence of two private-value auctions in which two objects
are sold (one per period). In every period, risk-neutral bidders draw their valuation
for the object from a time-varying i.i.d. distribution. Then they submits bids.
Given the profile of bids, the auction format determines the winning bidder and the
payment of each player. The good is then consumed within the period. Therefore,

1 Indeed, the 2020 Nobel prize for economics was awarded to Paul Milgrom and Robert Wilson
“for improvements to auction theory and inventions of new auction formats.” The Nobel committee
rightly noticed that “astronomical sums of money change hands every day in auctions”.

2 There are a number internet tutorials explaining how to create blockchain based tokens (I
invite the reader to search “how to create an ERC-20 Token”, where ERC-20 is the simplest token
that can be created on the Ethereum blockchain). There are also a number of services allowing to
create a blockchain-based tokens without directly coding (see, for example, https://tokenmint.io
and https://www.tokenmakerclub.com)

https://tokenmint.io
https://www.tokenmakerclub.com
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each auction is a very simple, static auction, repeated twice (that is, there is no
connection between auctions in different periods).

The auctioneer could accept payments in fiat currency, in which case the analysis
of the equilibrium is straightforward: by the revenue equivalence theorem and under
an appropriate assumption on the distribution of valuations, all common auction
formats with a reservation price of zero maximize revenues. It follows that, in each
period, the largest revenues the auctioneer can earn are equal, in expected value, to
the expected second-highest valuation. If the auctioneer is risk averse, however, the
variance of the revenues will also affect his utility.

But the auctioneer could also create a new blockchain-based token. I consider
an auction with tokens which is as close as possible to the auction without tokens:
bids and payments are expressed in fiat currency (for example USD), but need to be
settled using the token created by the auctioneer. More precisely, in the auction with
tokens after bids are submitted, the winner is announced together with a profile of
payments that depends on the auction format and the profile of bids. At this point,
a market for tokens opens in which bidders and the auctioneer exchange tokens.
The bidders then the use the tokens acquired to pay the auctioneer.

The key insight is that, in an auction with tokens, in period 1 tokens might be
purchased for speculation and not for bidding. This will happen when the realized
valuations in period-1 are low (relative to the period-2 expected valuations). In this
case the demand for tokens for bidding in period 1 is low. This creates an arbitrage
opportunity for bidders: they may purchase tokens in period 1 for then selling them
in period 2. This arbitrage opportunity implies that, for any specific realization of
the period-1 valuations, the equilibrium price for tokens in period 1 cannot be lower
than the expected period-2 price of tokens.

The possibility of speculating with tokens therefore creates a lower bound to
the period-1 price for tokens. As a consequence, the auctioneer’s period-1 revenues
are higher in an auction with tokens than in an auction without tokens. At the
same time, in period-2, the auctioneer may face competition from bidders on the
market for tokens—in the sense that, to the extent that bidders bought tokens
that they did not use for bidding, they will also be selling tokens alongside the
auctioneer. Hence, the auctioneer’s period-2 revenues are lower in an auction with
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tokens than in an auction without tokens. Furthermore, the speculative demand
for tokens is deterministic, as it depends on the expected period-2 valuations and
not on the realized period-1 valuations. The auction with tokens therefore differs
from the auction without tokens both in the time profile and in the variance of the
auctioneer’s earnings.

Interestingly, here the specific monetary policy (i.e., the rules determining the
creation of destruction of tokens between periods) can be considered as part of the
auction format. With this respect, I study two types of monetary policy. The first
one is a monetary policy that increases (or shrinks) all tokens by a given factor. I
show such monetary policy is irrelevant, in the sense that it does not affect neither
the total two-period revenues earned (which are equal to those in the auction without
tokens), not the auctioneer’s utility. I then consider a monetary policy inspired by
staking, in which the tokens used for bidding grow (or shrink) at a different rate
than tokens used not for bidding.3 Again, this policy does not affect the total two-
period revenues. Nonetheless, it affects the auctioneers’ utility. To see this, consider
an extreme form of this policy: one that destroys all tokens used for bidding (or
give an infinitely large reward to those not used for bidding). Under this policy,
the entire two period revenues are earned by the auctioneer at the beginning of the
game. Furthermore, if trading of tokens is allowed also before valuations are drawn,
then these revenues are earned with probability 1.

It is therefore possible to create an auction with tokens that removes all risk and
also front-load all payments to the auctioneer. If the auctioneer can save (so that
these earnings can be optimally reallocated to different periods), then the auction
with tokens is preferred to the auction without tokens, strictly so if the auctioneer
is risk averse. Interesting, the benefit of an auction with tokens (relative to one
without tokens) increases in the presence of borrowing constraints. The reason is
that, in an auction without tokens, achieving the optimal consumption smoothing
may require the auctioneer to borrow. Hence, if borrowing is constrained, then
optimal consumption smoothing may not be possible. In an auction with tokens,
all revenues accrue at the beginning. Hence, the auctioneer can achieve the optimal

3 Staking generally refers to the allocation of additional tokens to those who “lock” or otherwise
do not use their tokens. Here tokens are used for bidding, so staking refers to the differential
rewards received by tokens that have been used for bidding relative to those that were not used.
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consumption smoothing by only saving.
Because the auctioneer is creating a new currency, a crucial assumption of the

model is that the auctioneer can commit to a specific monetary policy, which can be
achieved by regulating the supply of the token via a blockchain-based smart contract.
It is also important that the auctioneer can commit to the auction format, in the
sense that the auctioneer cannot refuse to accept tokens as a means of payment
after announcing that he would do so. Again, depending on the nature of the object
sold, this type of commitment could be achieved via a smart contract. Finally, I
do not assume that the auctioneer can commit to behaving in a certain way on the
market for tokens—for example, when selling tokens the auctioneer cannot commit
to buying them back at a later date.

Literature review

The mechanism design literature noticed long ago that certain centralized mecha-
nism can be implemented in a decentralized way by using tokens (see, for example,
Ostroy and Starr, 1974, Kocherlakota, 1998). Similarly, some of the early papers in
monetary theory considered general-equilibrium models in which there is at least an
equilibrium in which money emerges (see Samuelson, 1958, and Townsend, 1980).
Because the equilibrium with money is Pareto superior to that without money,
again, we can think of money as allowing for the decentralized implementation of
some (usually constrained) optimal allocation. More closely related are models in
which money has value because of exogenous reasons. For example, in Starr (1974),
a government creates money and establishes that taxes need to be paid using money.
Similarly to what happen in our model, in Starr (1974), money has strictly positive
value also in a finite-horizon model. Of course, the fact that the government creates
money and gives it value opens the issue of monetary commitment (see, for example,
Lucas Jr and Stokey, 1983).

The advent of blockchain and blockchain-based tokens provided new impulse to
the above literature (for an overview, see Townsend, 2020). The reason is that,
thanks to blockchain, anyone can create tokens at (almost) no cost. Also, smart
contracts can be used to generate commitment, for example to a given monetary pol-
icy, or to perform payments based on contingencies. Several authors have therefore
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studied how blockchain-based tokens and smart contracts can be used to implement
various types of mechanism in a decentralized way (see, Holden and Malani, 2019,
Gans, 2019, Lee, Martin, and Townsend, 2021).

With this respect, note that, in the model presented here, the auction itself could
be a traditional, centralized auction, or a decentralized one (via a smart contract).
Also, auctions can be held with or without tokens (and, in each case, with or without
a smart contract). Hence, tokens do not affect the implementation of the mechanism
(i.e., the auction). Tokens however allow for the decentralized implementation of
a risk-sharing agreement between bidders and the auctioneer. It follows that, in a
world of perfect contracting, issuing tokens and signing a contractual agreement will
achieve the same outcome. If, however, there are contracting frictions (for example,
certain relevant variables are observable but not contractible) then issuing tokens
may be more efficient that a contractual agreement.

A number of papers studied theoretically firms’ incentives to issue blockchain-
based tokens, which either represent a pre-sale of a given unit of future output, or
the only currency that the firm will accept in the future. Some of these papers
showed that, in the presence of network externalities, selling tokens helps avoiding
coordination failures (Sockin and Xiong, 2018, Cong et al., 2021, Bakos and Hal-
aburda, 2018, and Li and Mann, 2018). Other papers focused on the sale of tokens
as an innovative way to raise capital and finance the development of a product or a
platform (Catalini and Gans, 2018, Malinova and Park, 2018, Canidio, 2018, Bakos
and Halaburda, 2019, Goldstein et al., 2019, Cong et al., 2020, Canidio, 2020, Gry-
glewicz et al., 2021, Garratt and van Oordt, 2021, Chod and Lyandres, 2021). In
the model considered here, the auctioneer has no financing need, the valuations for
the product are exogenously given, and there are no network externalities. Hence,
tokens are sold purely to earn a profit. Nonetheless, there is a connection with
the above literature, because I show that issuing tokens and implementing an ap-
propriate monetary policy allows the auctioneer to manipulate his time-profile of
earnings and the risk faced by the auctioneer. Both these elements are important
in determining the incentives to invest and create new ventures.

I will frequently refer to two important results in auction theory. The first is the
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revenue equivalence theorem, which states:4

Assume each of a given number of risk-neutral potential buyers of an
object has a privately-known signal independently drawn from a common,
strictly-increasing, atomless distribution. Then any auction mechanism
in which (i) the object always goes to the buyer with the highest signal,
and (ii) any bidder with the lowest-feasible signal expects zero surplus,
yields the same expected revenue (and results in each bidder making the
same expected payment as a function of her signal).

For our purposes, the above statement implies that all common auction formats
(i.e., first-price, second-price, all-pay, ...) generate the same expected payment from
bidders and hence the same expected revenues to the auctioneer. The second result
is the design of optimal auctions.5 In particular, in the model I will assume that the
distribution of valuations is such that all common auction formats with a reservation
price of zero maximize the auctioneer’s expected revenues.

2 The model

I consider a single-object private-value auction, repeated twice. There are n ≥ 2

ex-ante identical bidders and an auctioneer. In period 0, the auctioneer decides
the auction format. If the auction format requires the use of tokens, then the
auctioneer creates an initial stock of tokens M , and also announces a monetary
policy, that is, how the stock of tokens will evolve over time (see below). Then, in
every period t ∈ {1, 2} the auctioneer sells a single object according to the auction
format specified initially. Each object sold has zero value to the auctioneer.

There is no discounting. Bidders are risk neutral and cash abundant, in the
sense that their cash constraint is never binding. The auctioneer has a time-varying
concave utility function Ut(), for t ∈ {1, 2}. For the time being, I assume that the

4 Vickrey (1961) developed some special case of the revenue equivalence theorem. The statement
presented here is taken from Klemperer (1999), and summarizes results in Myerson (1981) and Riley
and Samuelson (1981). For a more general formulation, see Milgrom and Segal (2002).

5 See, again, Myerson (1981), Bulow and Roberts (1989), Bulow and Klemperer (1996) and
Klemperer (1999).
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auctioneer cannot borrow nor save, and hence must consume in each period the
totality of the revenues raised in that period. I relax this assumption in Section 4.1.

Auctions without tokens If the auctioneer runs an auction that does not require
tokens, then in each period t ∈ {1, 2}:

• First, each bidder draws a valuation vi,t > 0 from a continuous and atomless
distribution with c.d.f Ft(v), p.d.f. ft(v) and support [v, v]. The auction is
in private values, and hence each bidder’s valuation is independent of the
other bidders’ valuations. Each vi,t is bidder i’s private information, but the
distributions Ft(v) for t ∈ {1, 2} are common knowledge.

• Then, each bidder sends a message bi,t ∈ R+ to the auctioneer, interpreted as
his bid.

• As a function of the messages received and the auction format initially an-
nounced, the auctioneer determines who is the winner and a payment βi,t ≤ bi,t

for each bidder (implicitly a function of all messages received).

• The winning bidder enjoys a payoff equal to vi,t − βi,t; all other bidders enjoy
a payoff equal to −βi,t; the auctioneer enjoys a per-period payoff equal to
Ut(
∑n

i βi,t).

Finally, to avoid uninteresting complications, I assume that vft(v) ≥ 1 − Ft(v)

for all t ∈ {1, 2} and v ∈ [v, v]. As we will see , under this assumption, any
standard auction format with a reservation price of zero maximizes the auctioneers’
revenues, and calculating the revenues from the optimal auction without tokens is
straightforward.

Auctions with tokens If the auctioneer uses tokens, then the timeline of each
period t ∈ {1, 2} is the following:

• Again, at the start of a period, each bidder draws a valuation vi,t from the
distribution Ft(v). Note that, at this point, both auctioneer and bidders may
own tokens that they accumulated from previous periods. Call At ≥ 0 the



2 The model 9

tokens owned by the auctioneer at the beginning of the period, and ai,t ≥ 0

the tokens owned by bidder i. By assumption, A1 = M and ai,1 = 0 for all
i ≤ n.

• Then, each bidder sends a message bi,t ∈ R+ to the auctioneer, interpreted as
his bid in USD.

• As a function of the messages received and the auction format initially an-
nounced, the auctioneer determines who is the winner and a payment βi,t ≤ bi,t

for each bidder (implicitly a function of all messages received). This payment
is expressed in USD, but needs to be settled using tokens.

• A frictionless, anonymous financial market for tokens opens, in which both the
auctioneer and bidders participate. All market participants are price takers,
and have deep-pockets in the sense that there is no upper bound to the amount
they can spend in purchasing tokens.
Call pt the equilibrium price for tokens; call qi,t the equilibrium demand for
tokens of bidder i; call Qt the equilibrium demand for tokens of the auctioneer.
Feasibility implies At +

∑
i ai,t = Qt +

∑
i qi,t. Finally, because tokens will be

used to pay the auctioneer (see the next point) it must be that qi,t ≥ βi,t
pt
−ai,t.

• Then, each bidder sends βi,t
pt

tokens to the auctioneer. At this point, bidders
own ai,t + qi,t − βi,t

pt
tokens, and the auctioneer owns At +Qt +

∑
i
βi,t
pt

tokens.

• The winning bidder enjoys a per-period payoff equal to the value of the object
minus the expenditure in tokens, that is: vi − pt · qi,t.6 Similarly, the losing
bidders enjoy a per-period payoff equal to −ptqi,t, and the auctioneer enjoys a
per-period payoff equal to Ut(−ptQt).

• The stock of tokens changes according to the monetary policy announced by
the auctioneer. Here I consider two possible monetary policy parameters:
a uniform increase (or decrease) of all tokens by the same factor τ < −1,
and an increase (or decrease) of only the tokens used for bidding by a factor
σ < −1. As a result at the beginning of the subsequent period each bidder

6 Note that qi,t could be negative, in which case the bidder earned money by selling tokens
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i owns ai,t+1 = (1 + τ)(ai,t + qi,t − βi,t
pt

), while the auctioneer owns At+1 =

(1 + τ)(At +Qt + (1 + σ)
∑

i
βi,t
pt

).

Finally, the auction formal is assumed to be such that: (i) those bidding the most
tokens win, (ii) those bidding zero tokens pay zero and win with probability zero.7

Note that the monetary policy considered here may sound far fetched, but is
actually very simple to implement in the context of blockchain based tokens. In
particular, the fact that the tokens used for bidding may grow at a different rate
than the other tokens is inspired by staking. In staking, those who “lock” some
tokens (or, more in general, do not use them) are rewarded with additional tokens.
Here the staking reward is positive if σ < 0, in which case those who do not use the
tokens receive an additional reward relative to those who do use them.

The above auction with tokens is very similar to an auction without tokens
because bids and payments are expressed in USD. The only difference is that those
payments need to be settled using the token—which is therefore a mean of payment
but not a unit of account. However, other assumptions are possible. For example,
bidders may be required to bid by submitting tokens, which could then be partially
returned to the bidders after the winner is determined.8 Perhaps more interesting
given the context, here the monetary policy is part of the auction format. Here I
consider only two possible policies, but many more are possible. The bottom line is
that the above is the least complex auction with tokens, and not the most general
auction with tokens.

Note also that, like in the auction without tokens, the winner can consume the
object at the end of the period. However, tokens cannot be consumed directly, but
need to be exchanged for USD in the following period. This implies that, in period 1,
the cost of purchasing tokens affects negatively bidders’ utility. However, in period
2, the bidders can sell some of the tokens accumulated (and only keep the ones they
need to bid) and consume the revenues earned.

7 Hence, if this was an auction without tokens, the revenue equivalence theorem would hold.
8 In this case, there is an additional complication: bidders need to purchase tokens before

bidding, which means that the equilibrium price for tokens may reveal some information relative
to the realized distribution of valuations. Hence, the equilibrium on the market for tokens is a
rational expectation equilibrium.
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3 Solution: auction without tokens

If the auction is without tokens, then all the standard results from auction theory
apply.9 Quite immediately, in every period, the revenue equivalence theorem holds:
all standard auction formats generate the same expected revenues. Also, a second
price auction with a reservation price of zero maximizes the auctioneers revenues,
which are

kt ≡ Et[vMax−1,t],

where vMax,t ≡ maxi{vi,t} is the realized highest valuation in period t, and vMax−1,t ≡
maxi 6=Max{vi,t} is the realized second-highest valuation in period t. Hence, if the
auctioneer decides not to use tokens, the maximum revenues he can earn are:

ΠUSD = k1 + k2

For a given auction format, the auctioneer’s utility is

UUSD = EU1(
∑
i

βi,1) + EU2(
∑
i

βi,2).

Hence, if the auctioneer is risk averse (i.e. his utility function is strictly concave
in at least one period), not all common auction formats maximize expected utility.
The reason is that the variance of the total payment received by the auctioneer also
matters for his utility. Nonetheless, in what follows, it is sufficient to note that for
any auction format, it must be that

UUSD ≤ U1(k1) + U2(k2)

with strict inequality if the auctioneer is risk averse.
9 See, for example, Klemperer (1999), in particular Section 4 (for the revenue equivalence theo-

rem) and Appendix B (how to calculate the optimal reservation price).
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4 Solution: auction with tokens

Consider the last period of the game. Clearly, tokens have no continuation value.
For this reason, bidders will purchase the strictly minimum amount of tokens to
bid, so that βi,2 = p2(ai,2 + qi,2). Hence, for given profile of bids, bidder i’s payoff in
period 2 is vi,2 + p2ai,2 − βi,2 if bi,2 > maxj 6=i {bj,2}

p2ai,2 − βi,2 otherwise,
(1)

Also, the auctioneer will sell all his tokens on the market, which implies that

p2 =

∑
βi,2

(1 + τ)
(
M + σ

∑
i βi,1
p1

)
where (1 + τ)

(
M + σ

∑
i βi,1
p1

)
is the total stock of tokens in period 2.

Consider now the bidders’ problem of how to bid. Note that this problem is
identical to that of an all-pay auction without tokens. By the revenue equivalence
theorem, expected revenues in this all-pay auction (without tokens) are equal to
that of a second-price auction (without tokens), which implies

E[
∑

βi,2] = k2.

Hence, at the beginning of period 2, the expected period-2 price for tokens is

pe2 =
k2

(1 + τ)
(
M + σ

∑
i βi,1
p1

) ,
For future references, note that whereas the incentives to bid in period 2 are the

same as in an all-pay auction with USD, the players’ payoffs need not to be. By
Equation 1, the players’ payoffs depend both on the outcome of the auction, and
on the initial distribution of tokens: before the valuations for period 2 are drawn,
bidder i expects to earn w2 ≡ Et[max{vi − vMax−1

t , 0}] in the auction, and p2ai,2
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from the sale of tokens.10 Each bidder i’s expected period-2 payoff is therefore

u2(ai,2) ≡ pe2ai,2 + w2.

Similarly, the auctioneer expected period-2 payoff is

U2(A2) ≡ pe2A2.

An interesting corollary is that the auctioneer’s period-2 payoff is the same as in the
auction without tokens if and only if the auctioneer owns all the tokens and will be
strictly lower otherwise.11

Consider now period 1. The next lemma derives the bidder’s payoff and equilib-
rium price of tokens for given profile of bids.

Lemma 1. For given realization of valuations and given profile of bids bi,1, ..., bn,1,
bidder i ∈ {1, ..., n}’s payoff isvi − βi,1 + wt if bi,1 > bj 6=i

−βi,1 + wt otherwise.

The equilibrium demand for tokens is

n∑
i

βi,1 + S

where
S = M

(
max {k2 − (1 + σ)

∑
i βi,1, 0}

k2 − σ
∑

i βi,1

)
is the speculative demand for tokens, that is, the demand for tokens not used for

10 It is useful to think of each bidder selling all their tokens and earning p2ai,2, while simultane-
ously purchasing tokens to bid β̃i,2. The expected cost of the bid is part of the expected payoff
from the auction.

11 This also implies that, if there is only one period, then an auction with tokens is identical to
an auction without tokens.
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paying the auctioneer. The equilibrium period-1 price is

p1 =
max{

∑n
i βi,1, k2 − σ

∑
i βi,1}

M
.

The most important observation is that, in period 1, bidders may purchase tokens
and not use them for bidding. This will happen in equilibrium when the realized
distribution of valuations is such that total payments to the auctioneer are low. In
this case, if the demand for tokens was determined exclusively by the tokens used
for bidding, the price for tokens would be lower (in expectation) in period 1 than in
period 2, which cannot be an equilibrium. The fact that there can be a speculative
demand for tokens, in turns, implies that the period-1 price for tokens has a lower
bound: it cannot be lower than (1 + τ)pe2.

With respect to the bidder’s payoff, when p1 > (1 + τ)pe2 the price for tokens is
decreasing over time and hence bidder will liquidate all tokens but the ones they
need to bid in period 1. If instead p1 = (1 + τ)pe2, bidders may carry some tokens
to period 2, but their value is the same in both periods, so the bidder’s payoff does
not depend on how many tokens are carried to the next period. In either case, the
bidder’s problem is identical to that of a standard auction without tokens. By the
revenue equivalence, E[

∑
i βi,1] is the same in all standard auction formats.

Knowing this, I can compute the auctioneer’s revenues. To start, note that in
equilibrium the speculative demand for tokens is held by bidders. The reason is
that bidders are indifferent between holding any amount of tokens for speculative
purposes, while if the auctioneer is risk averse, he will strictly prefer not to hold
tokens for speculative reasons.12 Hence, the auctioneer’s stock of tokens at the
beginning of period 2 is:

(1 + σ)(1 + τ)

∑n
i βi,1
p1

= (1 + σ)(1 + τ)M
min{

∑n
i βi,1, k2 − σ

∑
i βi,1}

k2 − σ
∑

i βi,1

12 If the auctioneer is risk neutral, then assuming that bidders hold all the speculative demand
for tokens is without loss of generality, because also the auctioneer would be indifferent between
holding any amount of speculative demand.
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Hence, the auctioneer’s two-periods expected revenues are

Πtokens = pe1M + E

[
pe2(1 + σ)(1 + τ)M

min{
∑n

i βi,1, k2 − σ
∑

i βi,1}
k2 − σ

∑
i βi,1

]
= E

[
max{

n∑
i

βi,1, k2 − σ
∑
i

βi,1}

]
+ E

[
min{(1 + σ)

n∑
i

βi,1, k2}

]
= k1 + k2.

Which is the same as in the auction without tokens. I summarize these results in
the following proposition.

Proposition 1. If the monetary policy is uniform, then the auctioneer two-periods
revenues are equal to the two-period revenues of the auction without tokens for all
M > 0, τ > −1, and σ > −1.

Proof. In the text.

As previously discussed, the fact that tokens can be bought for speculative rea-
sons generates costs and benefits to the auctioneer. In period 1, there is a benefit
because the period-1 price is now bounded below. At the same time, the auction-
eer’s receive fewer tokens back and hence starts period 2 being poorer then if the
speculative demand was absent. The above proposition shows that, for all possible
τ , σ and M these two effects cancel out.

This emerges clearly from the auctioneer’s utility, which is

Utokens = EU1(p1M) + EU2

[
p2(1 + σ)(1 + τ)M

min{
∑n

i βi,1, k2 − σ
∑

i βi,1}
k2 − σ

∑
i βi,1

]
= EU1

[
max{

n∑
i

βi,1, k2 − σ
∑
i

βi,1}

]
+ EU2

[
(1 + σ)

∑
i βi,2

σ + max{
∑

i βi,1, k2 − σ
∑

i βi,1}

]

For intuition, consider the case σ = 0. In this case the auctioneer’s utility is

Utokens,σ=0 = EU1(p1M) + EU2

[
p2M(1 + τ)

min{
∑n

i βi,1, k2}
k2

]
=pr{

∑
βi,1 > k2}

(
EU1(

∑
βi,1|βi,1 > k2) + EU2(

∑
βi,2)

)
+

pr{
∑

βi,1 < k2}
(
U1(k2) + EU2

(∑
βi,2 ·

∑
βi,1

k2
|
∑

βi,1 < k2

))
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Hence, conditional on
∑n

i βi,1 > k2, utility is the same as in the auction without
tokens. However, conditional on

∑
bi,1 < k2, there are important differences between

this case and the one without tokens. To start, period-1 expected revenues in the
auction with tokens are equal to the period-2 expected revenues in the auction
without tokens, and the same holds for period 2 revenues. Furthermore, in period 1
the auctioneer faces no risk, while in period-2 the auctioneer faces additional risk.

Note also that neither M nor τ affect the speculative demand for tokens, and
hence neither M nor τ affect period-1 and period-2 revenues. The reason is that,
if τ or M change, the price of tokens in period 2 change, but speculator’s are fully
compensated by an equal increase in their stock of tokens. The parameter σ instead
matters for the speculative demand for tokens, and hence for how total revenues are
distributed between the two periods. To see how this reflects on the auctioneer’s
utility, consider two extreme cases:

• If σ > 0 and sufficiently large, then it is easy to see that the auctioneer’s utility
is equal to that of the auction without tokens. This is quite intuitive: if σ > 0

and sufficiently large, then there is never any speculative demand for tokens.
The entire stock of tokens is sold by the auctioneer in period 1, then received
back as payment, then sold again in period 2.

• σ = −1, we have that UTokens,σ = EU1(
∑
βi,1 + k2). In this case the auc-

tioneer destroys the tokens he receives as payments in period 1. The result
is that period-2 payoff is zero, and the entire revenues are earned in period
1. Interestingly, the auctioneer earns period-2 expected revenues for sure in
period 1.

Whether the case σ = −1 generates higher or lower utility than the auction with
tokens is ambiguous. In an auction with tokens with σ = −1 there is less risk, but
the revenues are earned only in period 1. In an auction with tokens there is more
risk, but consumption is spread over 2 periods. Whether allowing for risk but also
for consumption smoothing (as in the auction without tokens) is better or worse
than reducing risk but also removing consumption smoothing (as in the auction
with tokens) will depends on the shape of the utility function.
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The comparison between the two cases becomes unambiguous if the auctioneer
can also save, as the next section shows.

4.1 Savings and borrowing

Suppose the auctioneer can save. In case of an auction with tokens with σ = −1,
then the auctioneer earns β1 + k2 in period 1, consume some of this in period 1 and
some in period 2. This way, he can achieve optimal consumption smoothing.

The possibility of saving also affects the utility from holding an auction without
tokens. Nonetheless, for all possible levels of savings, the auctioneer will still need
to bear some risk in period 2, which is not the case in an auction with tokens. As a
consequence, his utility will be lower than in the auction with tokens with σ = −1.

I summarize these observations in the following proposition.

Proposition 2. If the auctioneer can save and is risk averse, then the auction with
tokens with σ = −1 is strictly preferred to an auction without tokens.

Finally, an interesting corollary having to do with the ability to borrow. In case
the auctioneer holds an auction with tokens with σ = −1, he can then optimally
smooth consumption by savings. In case of an auction without tokens, instead,
optimal consumption smoothing may require the auctioneer to borrow. Hence, the
presence of borrowing constraint or other types of credit market frictions increases
the benefit of holding an auction with tokens relative to one without tokens.

4.2 Pre-sale of tokens

I now extend the model by allowing the trading of tokens already in period 0,
before the start of the auction. Clearly, in period 0 the only demand for tokens is a
speculative demand, which implies that

p0 = E[p1]

It is easy to check that, if the auctioneer runs an auction with tokens with
σ = −1, he can sell all his tokens in period 0 and earn k1 + k2 with probability 1.
By saving what he earned, he can then consume a fraction of his earnings in period
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1 and the rest in period 2. Hence, the pre-sale of tokens together with the ability to
save allows the auctioneer to eliminate all risk, while at the same time achieve the
optimal consumption profile.

Remember that, here, any common auction format with a reservation price of
zero maximizes revues. The above discussion therefore implies the following propo-
sition.

Proposition 3. If the auctioneer can save and there is a pre-sale of tokens, then
any common auction format that

• has a reservation price of zero

• uses tokens

• implements a monetary policy σ = −1

is optimal.

5 Discussion: contractual agreement

I showed that, if the auctioneer can save, he can design an auction with tokens that
eliminate all risks and achieve optimal consumption smoothing. Because bidders
are purchasing tokens, they are effectively bearing all the risk and also front-loading
all payments to the auctioneer. This is efficient because bidders are assumed risk
neutral and cash abundant. The important observation is that, if the auctioneer and
the bidders could write a side contract, bidders would fully insure the auctioneer,
and also borrow/lend money to the auctioneer so that he can achieve optimal con-
sumption smoothing. Hence, issuing tokens and writing a contract can, in principle,
achieve the same outcome.

There are however two important considerations. First, although a contract
may achieve the same outcome than issuing tokens, they may not generate the same
utility for the auctioneer. Clearly, in the case of an auction with tokens, the entire
surplus generated by removing risk and implementing the optimal consumption
smoothing is earned by the auctioneer. In the case of contracting, this surplus will
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be shared as a function of the specific bargaining protocol or bargaining solution
considered.

Second, there could be a number of contracting frictions. Note that when issuing
tokens, the bidders collectively insure the auctioneer from all risks. Doing this via
a contract therefore requires coordinating multiple parties. Also, if certain elements
may be observable but not contractible (for example, to the two distributions of val-
uations), then it may not be possible to achieve an efficient outcome via a contract.
Finally, as already discussed in the introduction, creating tokens and trading tokens
can be done at almost no cost, while writing and enforcing contracts may generate
significant costs.

To summarize, in a world in which contracts are perfect and costless, then is-
suing tokens achieves the same outcome than a contractual agreement, but in a
decentralized way. However, in the presence of any contracting frictions or costs,
then issuing tokens is strictly preferred to writing a contract.

A Mathematical derivations

Proof of Lemma 1. For given realization of the bidder’s valuations and given bids,
there are two possible cases: p1 > (1 + τ)pe2 or p1 = (1 + τ)pe2.13

If p1 = (1 + τ)pe2 = k2

M+σ

∑
βi,1
p1

, then bidders are indifferent between purchasing

tokens in period 1, not using them to bid, having them multiply by 1 + τ , and then
selling them in period 2. I call the demand for tokens that are not used for bidding
the speculative demand for tokens, denoted by S ≥ 0, which must be such that
p1 =

∑
i βi,1

M−S = (1 + τ)pe2, or ∑
i βi,1

M − S
=

k2
M + σ(M − S)

S = M

(
k2 − (1 + σ)

∑
i βi,1

k2 − σ
∑

i βi,1

)
Hence, there is an equilibrium with p1 = k2

M
if and only if k2 ≥ (1 + σ)

∑n
i βi,1. In

13 Clearly, there cannot be an equilibrium in which p1 < k2

M : if this was the case, bidders and the
auctioneer can make unlimited profits by purchasing tokens in period 1 and selling them in period
2, and their demand for tokens is undefined.
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such equilibrium, for given profile of bids, bidder i’s two-periods payoff isvi − βi,1 + wt if bi,1 > maxj 6=i {bj,1}

−βi,1 + wt otherwise.

where I used the fact that, by assumption, ai,1 = 0.
If instead p1 > (1 + τ)pe2 = k2

M+σ

∑
βi,1
p1

, then, again, holding more tokens than

what is necessary in order to bid generates a cost, because the future expected price
of tokens is lower than the current price. Hence, again, βi,1 = p1(ai,1 + qi,1) and∑

i βi,1 = p1M . This is an equilibrium if and only if∑
i βi,1
M

>
k2

M(1 + σ)

or (1 + σ)
∑

i βi,1 > k2. In this equilibrium, using the fact that ai,2 = 0, for given
profile of bids, bidder i’s two-periods payoff asvi,1 − βi,1 + w2 if bi,1 > maxj 6=i {bj,1}

−βi,1 + w2 otherwise.

which is identical to the previous case.
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