
Highlights

Sentiment, Google Queries and Explosivity in the Cryptocurrency
Market

• We propose a Backward Superior Covariate-Augmented Dickey-Fuller
(BSCADF) test including sentiment as a covariate for detecting explo-
sive financial time series behaviour;

• We exploit the information derived from a large set of news and Google
Search Indices to detect the presence of speculative bubbles in cryp-
tocurrency prices;

• The BSCADF test statistics tends to significantly diverge from its uni-
variate counterpart during price surges;

• Evidence shows how investors’ sentiment plays a more determinant role
if compared to Google queries in providing an early warning bubble
signal.
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Abstract

The lack of fundamental values in the cryptocurrency market paves the way
for the rise of unprecedented speculative bubble phenomena, which are often
associated with alternating phases of investors’ fear and greed. We propose
to exploit the information derived from a large set of cryptocurrency news
and Google Search Indices to detect and, possibly, anticipate the presence
of speculative bubbles in cryptocurrency prices. This is done by means of
a Backward Superior Covariate-Augmented Dickey-Fuller (BSCADF) test,
which allows us to explicitly account for market sentiment when testing the
presence of an explosive root in cryptocurrency prices. Our results show that
the covariate test statistics does significantly diverge from the traditional one
in concomitance with price surges, highlighting the ability of sentiment to
foresee speculative bubble occurrences. We also show how a polarised version
of investors’ sentiment plays overall a more determinant role, if compared to
news volume and Google queries, in providing an early warning signal of
market bubble episodes in cryptocurrencies.

Keywords: Bitcoin, Cryptocurrency Market, Sentiment, Speculative
Bubbles, Google Trends, Big Data Application

Preprint submitted to Elsevier October 22, 2021



1. Introduction

Since cryptocurrencies were conceived in first place under the advent of
Bitcoin (Nakamoto et al., 2008), research on this topic has been prospering
in a highly multidisciplinary way. The emergence of fields such as machine
learning (ML), deep learning (DL), Big Data Analytics (BDA), eXplainable
artificial intelligence (XAI) and Automated Trading Systems (ATS) have, at
the same time, brought new challenges to both academics and practitioners
calling for rapid knowledge advances in several disciplines, particularly com-
puter science, from a wide variety of perspectives - see for instance Huang
et al. (2019); de Souza et al. (2019); Lee (2019); Jaquart et al. (2021); Yi
et al. (2021); Corea (2016). On the other hand, methods pertaining to such
innovative fields often lack a sound and robust state-of-the-art econometric
and statistical framework, so to develop models accurately, conduct appro-
priate inference, and - most importantly - improve model performances. It
is against this background that we propose a novel sentiment-based testing
procedure for cryptocurrency explosiveness, which explicitly takes into ac-
count for any possible price predictors. We develop our empirical application
upon a large set of financial news, in order to anticipate speculative bubble
occurrences in cryptocurrency prices.

Statistical properties of cryptocurrencies, price connectedness and their
usage for investment purposes have been largely analysed in applied research,
due to the appealing and unique market features of these novel financial in-
struments. In Corbet et al. (2018b) the authors investigate the dynamic
spillovers of cryptocurrencies with other financial assets, demonstrating that
the two categories of financial instruments are not significantly linked. Sim-
ilarly, Giudici and Pagnottoni (2019, 2020) explore the dynamic connected-
ness of Bitcoin exchanges and provide evidence on their relative importance in
transmitting information on the dynamics of the fundamental (unobserved)
Bitcoin price. Their findings are linked, from a lead-lag relationship per-
spective, to those reached in the field of price discovery on Bitcoin (and
cryptocurrency) exchanges – see Brandvold et al. (2015), Pagnottoni and
Dimpfl (2019) and Dimpfl and Peter (2020). Bouri et al. (2019b) and Resta
et al. (2020) examine the performances of a number of different technical
trading rules in cryptocurrency markets and provide evidence on the fact
that moving-average based strategies are, across all alternatives analysed,
the best performing trading strategies. The latter analyses could be further
extended by exploiting frameworks such as that developed by Huang and
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Huang (2020).
A fluorishing literature has started investigating the cryptocurrency bub-

ble phenomena, mostly focusing on the analysis of cryptocurrency price dy-
namics from a univariate time series perspective. Cheung et al. (2015) analyse
the presence of bubbles in Bitcoin prices from 18 July 2010 to 18 February
2014 by employing the Phillips et al. (2011) methodology. Evidence from the
generalised Supremum Augmented Dickey Fuller (GSADF) statistics sup-
ports the existence of three large bubbles, most of which do not last for
more than a few days period. Fry and Cheah (2016) investigate speculative
bubble occurrences on the Bitcoin Coindesk Index over the period from 18
July 2010 to 17 July 2014 by means of a price model which is composed of a
Wiener process and a jump process so to control for constant intrinsic rate
of return and intrinsic level of risk. They show that an explosive behaviour
exists in the Bitcoin market, and the random walk hypothesis is rejected. In
Corbet et al. (2018a) the authors analyse Bitcoin and Ethereum data from
9 January 2009 to 9 November 2017 and from 7 August 2015 until 9 Novem-
ber 2017, respectively, so to identify intrinsic bubbles, herding behaviour and
time-varying fundamentals of the cryptocurrency market. They employ a dy-
namic econometric approach using the Supremum (SADF), the Generalised
Supremum (GSADF) and the Backward Supremum (BSADF) Augmented
Dickey-Fuller specifications. They find evidence of a Bitcoin bubble at the
turn of the year from 2013 and 2014 and, in line with the extant literature,
that the occurrence of speculative bubbles in the digital currencies under
examination did not last for a long time. We refer the reader to Kyriazis
et al. (2020) for a systematic review on cryptocurrency bubbles.

More recently, Bouri et al. (2019a) have studied co-explosivity on data
about Bitcoin, Ripple, Ethereum, Litecoin, Nem, Dash and Stellar that over
the period from 7 August 2015 to 31 December 2017 in order to study co-
explosivity in their markets. They find, among others, that: Bitcoin’s ex-
plosivity tends to lower Ripple’s explosivity; as price increases in Ethereum,
Litecoin, Nem and Stellar, market values of Ripple market tend to conse-
quently adjust; also digital currencies with small market capitalisation are
in some cases influential in transmitting price shocks to others. Similarly,
the study from Agosto and Cafferata (2020) employs price data on Bitcoin,
Ethereum, Ripple, Litecoin and Stellar, over the period 1 January 2017 –
31 December 2018, to examine co-explositivy of cryptocurrency time series,
covering the price surge period at the end of 2017. Partly contrasting with
Bouri et al. (2019a), they find Ethereum particularly important in deter-
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mining explosivity of other cryptocurrencies, and Bitcoin to be quite highly
impacted by the dynamics of the other cryptocurrencies’ prices. A recent
contribution from Gronwald (2021) analyses the prices of Bitcoin, Ripple,
Ethereum, and Litecoin expressed in US Dollars and, for the price of the
latter three, additionally expressed in Bitcoin. Additionally, alternative ap-
proaches based on continuous time stochastic models for Bitcoin dynamics,
which depend upon a market attention factor, i.e. an index based on Google
search queries, have been developed by Cretarola and Figà-Talamanca (2019,
2020). Their findings indicate that, when the correlation between the market
attention factor and Bitcoin returns is above a threshold, creating a vicious
loop between the time series, a speculative bubble tends to emerge.

At the same time, numerous studies analyze the impact of news and
investors’ sentiment on the dynamics of financial markets. They mainly deal
with the statistical and econometric analysis of non conventional data - see,
for instance, Bollen et al. (2011), Bordino et al. (2012), Choi and Varian
(2012), Feldman (2013), Huang et al. (2015),Cerchiello and Giudici (2016),
Cerchiello and Nicola (2018), Scaramozzino et al. (2021) - who all show the
added value of textual data and sentiment in economics and finance. In
the specific context of cryptocurrency dynamics, prominent examples such
as that of Aste (2019) demonstrate how prices affect sentiment and vice-
versa, with noticeable differences in intensities and number of significant
interactions.

Against this premises, we propose to exploit the information derived from
a large set of cryptocurrency news to detect and foresee the presence of
speculative bubble phenomena occurring in cryptocurrency prices. In other
words, by means of a Backward Superior Covariate Augmented Dickey-Fuller
(BSCADF) test, we are able to explicitly model the market sentiment in the
context of testing for an explosive autoregressive coefficient in the cryptocur-
rency price series. The main advantage of the inclusion of the covariate in
the model specification is that the power of the test, if compared to its uni-
variate counterpart, can be increased - meaning that the price bubble can
be detected more efficiently - without incurring in large size distortions - see
Caporale and Pittis (1999).

We apply our methodology to detect explosivity in the price series of
three major cryptocurrencies in terms of market capitalization, i.e. Bitcoin
(BTC), Ethereum (ETH) and Ripple (XRP), sampled at a daily frequency,
over the period ranging from 31 May 2019 to 31 May 2021. We augment the
standard recursive ADF procedures with two different categories of covari-
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ates: a) sentiment covariates, which consist of synthetic polarised (positive
or negative) scores, assigned to a large set of cryptocurrency news, gathered
from a variety of financial media sources; b) news volume covariates, namely
the relative amount of Google queries for the search terms associated to the
names of each cryptocurrency.

We find a clear divergence of the two test statistics with and without
covariate, which arises well before price accelerations. As soon as explosivity
of the time series comes into place - instead - both tests tend to indicate
a rejection of the unit root hypothesis in favour of the alternative of an
explosive price autoregressive coefficient. We further provide evidence on
the fact that the sentiment indicator, which does take into account for the
positive, negative or neutral meaning of cryptocurrency news, seems to act as
a better early warning indicator of price surges, if compared to term search
volumes.

Our contribution to the literature is twofold. From a methodological view-
point, we extend the Covariate-Augmented Dickey-Fuller setting for unit root
testing (Hansen, 1995) to the framework of bubble detection and explosivity
testing (Phillips et al., 2011). In this way, we provide recursive ADF testing
procedures which exploit the information of any relevant covariates to detect
the explosive behaviour of a target time series. From an empirical viewpoint,
to the best of our knowledge, this is the first empirical application of such
a testing strategy in the literature on cryptocurrency bubbles. This setup
is able to unveil the nexus between cryptocurrency prices, search volumes
and investors’ sentiment, from a robust econometric viewpoint, providing an
early warning signal of speculative bubble phenomena in the market.

The remainder of this paper proceeds as follows. Section 2 outlines
our proposed methodology for sentiment-based cryptocurrency explosive be-
haviour detection. Section 3 illustrates empirical application and outcomes.
Section 4 offers some concluding remarks.

2. Methodology

2.1. Testing for price explosivity

From an econometric point of view, one of the main research questions
related to cryptocurrencies concerns the possible presence of bubbles in their
price. An asset bubble is defined in literature as an extreme price acceleration
that cannot be driven by the underlying fundamental economic variables
(Case and Shiller (2003); Dreger and Zhang (2013)). The end of this phase,

5



often referred to as bubble burst, leads to drastic price drops, causing severe
losses to investors.
Several recent works provided empirical evidence of the presence of bubbles
in the cryptocurrency prices (Fry and Cheah (2016); Corbet and Yarovya
(2018)). From a methodological viewpoint, most of them resorted to the
right-tailed unit root testing approach based on Augmented Dickey Fuller
(Dickey and Fuller (1979)) regression. Indeed, the extremely rapid price
increase, to which the definition of financial bubble refers to, can be described
by an exponential growth, whose occurrence can be detected through right-
sided unit root tests.

Specifically, Phillips et al. (2011) proposed a univariate approach to test
for end-of-sample bubbles through estimation of the ADF regression:

yt = µ+ φyt−1 +

p∑
i=1

ψi∆yt−i + εt, εt ∼ N (0, σ2) (1)

performed on the full sample of data, where µ is the intercept and p is
the number of lags of the differenced dependent variable ∆yt, chosen through
some model selection criteria. A possible alternative specification includes a
deterministic trend.
In the standard ADF test, Equation (1) is used to test the null hypothesis
φ = 1, corresponding to the random walk process, against the alternative of
stationarity (φ < 1). In the right-tailed unit root test for explosivity pro-
posed by Phillips et al. (2011), the null hypothesis is still the random walk
one, but the alternative is φ > 1, corresponding to an explosive behaviour.
The ADF test applied to the full sample can be denoted as ADF 1

0 (p).
Howewer, full sample tests for explosivity can be shown to have poor power
to detect short duration bubble episodes. To overcome this, Phillips et al.
(2015) proposed to perform a sequential estimation of the ADF statistics by
recursively applying the test to subsamples of the data.
Specifically, denoted by ADF (p)r2r1 an ADF test performed on the subsam-
ple t = br1T c , . . . , br2T c, Phillips et al. (2015) proposed the following test
statistic:

SADF := sup
r2∈[r0,1]

{ADF (p)r20 } (2)

The SADF test is thus the supremum (S) of right-tailed ADF statis-
tics performed on a window of observations starting at t = 1 subject to a
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minimum sample size br0T c. This recursive regression technique was shown
to have high power in detecting periodically collapsing bubbles, which fre-
quently occur in empirical market prices.
The same authors highlighted that the SADF test, being based on an expand-
ing window, can lack of power in detecting end-of-sample bubble episodes,
due to the relatively higher influence of early observations. Furthermore,
financial analysts and authorities are mainly interested in tools for real-time
detection of bubbles, so to understand whether a particular observation be-
longs to a bubble phase in the overall trajectory.

Based on these motivations, Phillips et al. (2015) proposed the following
test statistic, based on repeated estimation of the SADF test on a backward
expanding sample, where the endpoint of each sample is fixed at r2 (the
sample fraction corresponding to the endpoint of the window) and the start
point varies from 0 to r2 − r0 (the sample fraction corresponding to the
origination of the window):

BSADFr2 := sup
r1∈[0,r2−r0]

{
ADF (p)r2r1

}
(3)

Thus, at each window end time r2, the BSADF test statistic is the supre-
mum of the right-tailed ADF statistics computed on all sub-samples ending
at date t subject to a minimum sample size br0T c.
As it provides a value of the test statistic for each time t = r2, the BSADF
test can also be effectively used for date stamping past explosive episodes. In
particular, the origination date of a bubble (r̂s) is calculated as the first time
in which the calculated BSADF statistic exceeds the critical value, while the
first observation following (r̂s) whose BSADF statistic goes back below the
critical value is considered as the termination date (r̂e) of the same bubble:

r̂s = inf
r2∈[0,1−r0]

{
r2 : BSADFr2(r0) > cvαr2

}
(4)

r̂e = inf
r2∈[rs+δT,1]

{
r2 : BSADFr2(r0) < cvαr2

}
(5)

where cvαr2 is the critical value of the BSADF statistic at time r2 for the
significance level α and δ is the fraction of the total sample - chosen by the
analyst - determining the minimum duration for an explosive pattern to be
identified as a bubble.
Critical values for the BSADF test can be obtained through simulation ex-
periments based on the limit theory in Phillips et al. (2015).
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2.2. Covariate-augmented unit root tests

The literature on unit root testing was mainly developed in a univariate
framework. However, it is quite simplistic to consider the financial and eco-
nomic environment as univariate, and taking into account the multivariate
nature of economic time series can in principle lead to better testing proce-
dures.
Hansen (1995) proposed to include stationary covariates in the standard ADF
framework, showing that exploiting the information embodied in related time
series can increase the power of stationarity tests.
Formally, Hansen (1995) considered the following regression model:

yt = µ+ φyt−1 +

p∑
i=1

ψi∆yt−i +

q∑
i=1

ξi∆xt−i + εt, εt ∼ N (0, σ2) (6)

Similarly to the conventional ADF test, the CADF test verifies the null
hypothesis that a unit root is present, i.e. H0 : φ = 1, against the left-
sided alternative H1 : φ < 1. Hansen (1995) refers to the test statistic as the
CADF (p, q) statistic. As in the conventional ADF regression, a linear trend
could also be included in the specification.
Denoted as νt =

∑q
i=1 ξi∆xt−i + εt the stochastic component of the response

dynamics driven by the covariate and the error process, the limit distribution
of the CADF test statistic - and thus its asymptotic power - is determined by
the long-run covariance matrix Ω :=

∑∞
k=−∞ E

(
εtε
′
t−k
)
, with εt := (vt, εt)

′,
from which the long-run squared correlation between vt and εt, ρ

2, can be
derived. When ∆xt has no explanatory power on the long-run movement of
vt, then ρ2 approaches 1. On the contrary, when ∆xt explains most of the
long-run variability of vt, then ρ2 approaches 0. The asymptotic distribution
- and thus power - of the test statistic depends on the nuisance parameter ρ2

but, provided that ρ2 is given, it can be simulated using standard techniques.
Heteroskedasticity and autocorrelation consistent covariance estimators that
can be used to obtain estimates of ρ2 have been proposed by, e.g., Andrews
(1991), Zeileis (2004), Zeileis (2006) and Kleiber and Zeleis (2008).

2.3. Bubble detection through covariate-augmented Backward Supremum ADF
tests

In the above specified framework, we propose to merge the right-tailed
and the covariate-augmented approaches described in Section 2.1 and 2.2 to
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identify potential bubbles in the cryptocurrency price time series, also con-
sidering the role of sentiment and news volume in anticipating and explaining
the crypto price patterns.
To this aim, we refer to the methodology by Korkos (2020), who proposed a
covariate-augmented BSADF test, named BSCADF, based on repeated esti-
mation of the CADF test statistic using the forward and backward rolling-
windows technique in (3):

BSCADFr2 := sup
r1∈[0,r2−r0]

{
CADF (p)r2r1

}
(7)

The BSCADF test can also be used for date stamping the detected bub-
ble occurrences, such as the BSADF.
The idea is that considering the sentiment and the volume of market infor-
mation can potentially affect the estimates of the autoregressive component
of the price dynamics, improving the power and/or the size of explosivity
tests and, thus, providing a signal that can be effectively used for bubble
detection.

3. Data and Empirical Findings

3.1. Data description

To test our proposal, we collect daily closing prices of Bitcoin, Ethereum
and Ripple over the period 31 May 2019 - 31 May 2021 from Coinmarketcap1.
The choice of those three cryptocurrencies is due to the need of having a suf-
ficient news coverage along the considered period for the reliable calculation
of a daily sentiment indicator. Indeed, the latter is proposed and produced
by Brain2, a research company specialized in the production of alternative
datasets and in the development of proprietary algorithms for investment
strategies on financial markets, which monitors public financial news on cryp-
tocurrencies from about 2000 financial media sources. The sentiment scoring
technology is based on a combination of various natural language processing
techniques. An initial step applies model based sentiment analysis which
is then further refined, in case of errors, through manual inspections. The
sentiment score assigned to each cryptocurrency is a value ranging from -1
(most negative) to +1 (most positive), updated on a daily basis.

1Data is available at https://coinmarketcap.com/
2https://braincompany.co
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As a counterpart of the mood monitoring, we consider a news volume in-
dicator, based on daily data of Google search queries for the terms ”Bitcoin”,
”Ethereum” and ”Ripple” over the same period from Google Trends3. Specif-
ically, the exogenous covariate we analyse is the daily Google Search Index,
which measures the relative volume of term searches performed, normalized
with a value equal to 100 corresponding to the day with the highest volume.
Notice that, in this case, both sentiment and search term volume indicators
can be obtained in a near-real time manner, therefore contributing to the
setup of a practical toolbox for sentiment-based explosivity monitoring.

We present relevant summary statistics of cryptocurrency prices, Brain
Sentiment Index and Google Search Index in Tables 1, 2 and 3, respectively.
We can notice that the cryptocurrency returns and the Brain Sentiment
indicator show similar patterns with average values close to 0 and totally
comparable standard deviations around 0.05-0.07. On the other hand, the
complete different nature and measurement level of Google trends is clearly
reported in Table 3. It is worth noticing that Ethereum is by far the most
searched crypto in the considered period, doubling the values of Bitcoin de-
spite its global popularity. Indeed, the nature of Google trends data which
cannot be gathered in absolute values but rather normalized to 100 as for
the first considered day, should be taken into account when looking at such
data.

Returns Min Max Avg Std Skew Kurt

BTC -0.3717 0.1875 0.0028 0.0402 -0.8118 12.1680
ETH -0.4235 0.2595 0.0046 0.0517 -0.6662 9.5027
XRP -0.4233 0.5601 0.0034 0.0676 1.5363 16.7793

Table 1: Summary statistics of cryptocurrency returns. The table presents relevant sum-
mary statistics of cryptocurrency returns over the period 31 May 2019 - 31 May 2021.

In Figure 1 and 2, we show the time series dynamics of our covariates,
namely the Brain Sentiment Index and the Google Search Index, respectively.
The Sentiment indicator appears to be rather stable although some relevant
drops appear clearly around March 2020 and first months of 2021. At the
opposite we notice an increasing trend for Google search with one big hype
for Ethereum during the spring 2021.

3Data is available at https://trends.google.com/trends/
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Brain Sentiment Min Max Avg Std Skew Kurt

BTC -0.3182 0.1439 0.0283 0.0536 -0.2580 1.2452
ETH -0.0916 0.2408 0.1083 0.0712 -0.4925 -0.2632
XRP -0.2031 0.2072 0.0318 0.0655 -0.2622 0.1932

Table 2: Summary statistics of Brain Sentiment Indicators. The table presents relevant
summary statistics of the Brain Sentiment Indicators over the period 31 May 2019 - 31
May 2021.

Google Search Min Max Avg Std Skew Kurt

BTC 52.2727 1008.8601 154.9287 131.3087 2.1707 5.4673
ETH 26.0870 2619.3434 296.0966 405.3924 2.4256 6.3983
XRP 44.3860 651.8219 101.2452 69.8259 3.1347 13.5140

Table 3: Summary statistics of Google Search Indices. The table presents relevant sum-
mary statistics of the Google Search Indices over the period 31 May 2019 - 31 May 2021.

We report, additionally, the correlation matrix and a scatter and empirical
distribution plot of our variables in Figures A.8 and A.9 in Appendix.
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Figure 1: Brain Sentiment Indicator time series. The figure shows the dynamics of the
daily sentiment index for the three selected cryptocurrencies over the period 31 May 2019
- 31 May 2021.
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Figure 2: Google Search Index time series. The figure shows the dynamics of the daily
Google Search Index for the three selected cryptocurrencies over the period 31 May 2019
- 31 May 2021.
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3.2. Results
Before proceeding with our price bubble analysis, we verify the possible

presence of non-stationarity in the analysed time series. We remark that non-
stationarity is not an issue, but rather a pre-requisite to conduct explosivity
analysis of a target variable (cryptocurrency prices). On the contrary, we
need to ensure that the considered covariates, which enter the model specifi-
cation of the recursive ADF test, are stationary, so to conduct proper infer-
ence on the autoregressive parameter of interest. To this aim, we present the
full-sample results of the standard left-sided ADF unit root test performed
on the three time series of price, sentiment and Google search queries related
to Bitcoin, Ethereum and Ripple in Table 4. As expected, evidence shows
that cyptocurrency prices are highly non-stationary, in particular Ethereum
and Bitcoin. All other covariates instead, except for the Google Search Index
related to Ethereum, are stationary in levels. We therefore proceed with our
analysis by first differencing the latter variable and by applying our testing
procedure to the rest of the variables in levels.

Time series p-value

BTC Price 0.7526
ETH Price 0.8266
XRP Price 0.3481
BTC Sentiment 0.0986
ETH Sentiment 0.0423
ETH Sentiment 0.0198
BTC Search 0.0235
ETH Search 0.1840
XRP Search 0.0000

Table 4: Augmented Dickey-Fuller (ADF) tests. The table reports the results of the ADF
unit root test performed on the three time series of price, sentiment and Google Search
Indices related to Bitcoin, Ethereum and Ripple over the full sample period 31 May 2019
- 31 May 2021. The model specification under the null hypothesis is a random walk, with
constant but no time trend. The test is performed considering the optimal number of lags
of the dependent variable according to the Bayes-Schwarz Information Criterion (BIC).

Within our framework, we perform BSADF and BSCADF tests for the
selected cryptocurrencies using, at each iteration, the optimal lag order of
the exogenous covariate determined through the Bayes-Schwarz (BIC) infor-
mation criterion. Figure 3 compares the dynamics of p-values for the BSADF

14



and the BSCADF test - the latter considering the Brain Sentiment Index -
along with their difference and the price dynamics of the considered cryp-
tocurrencies. On the one hand, evidence shows that during period of tranquil
market dynamics the BSADF and BSCADF test statistics tend to co-move
strongly, giving raise to low-magnitude deviations between the two. On the
other hand, from the beginning of October 2020 onwards, we observe that
the two test statistics start diverging and, in most cases, the p-value of the
BSADF test statistics is smaller than the p-value of the covariate-augmented
test, meaning that the inclusion of sentiment as an explanatory variable re-
duces the estimated acceleration of the price pattern. Furthermore, notice
that the rising difference between the two is associated to a consequent surge
in the cryptocurrency prices.

The latter result is likely due to the influence of the lagged sentiment
indicator, which is able to explain a large portion of the cryptocurrency price
variations, and thus lowers the value of the test statistics inducing different
outcomes with respect to those obtained by the test without covariates. In
fact, this difference arises, in general, well before the cryptocurrency price
surge, indicating that the misalignment between the two test statistics can
be informative and act as an early-warning indicator for bubble detection
purposes. On the contrary, when the price growth takes strength, the two
tests tend to converge on low p-values, corresponding to rejection of the
random walk hypothesis in favour of explosivity. This is evident for all the
analyzed cryptocurrencies, for which the BSCADF p-value drops below the
significance level - signalling the start of a bubble period - right before the
beginning of an exponential price growth. When the price starts growing
exponentially, the estimated autoregressive dynamics begins indeed to be
explosive, even conditionally on market sentiment.

On the other hand, Figure 4 shows the p-value dynamics of the BSADF
and the BSCADF test including the Google Search Index, along with their
difference and the price dynamics of the considered cryptocurrencies. Al-
though the divergence between the two test statistics’ p-values can still pro-
vide a signal, this is yet not clear as in the sentiment case. On the one hand,
we can notice a clear inversion of the sizes of the two p-values before the price
surge in Ethereum, as it was for sentiment. On the other hand, the signal
is not as pronounced for Bitcoin or Ripple. This suggests that a polarised
indicator, which takes into account for the possible positive, negative and
neutral polarity of news, might be more useful as an early warning indicator
of time series explosiveness if compared to search volumes. Indeed, while the
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Figure 3: BSADF and BSCADF Brain Sentiment Index test p-values. The figure shows
the BSADF and BSCADF p-values (bottom panels), their difference and closing price
dynamics (top panels) of the three cryptocurrencies, using the Brain Sentiment Index as
a covariate, over the full sample period. Black dashed lines indicate the 10% significance
level.

latter do measure the level of interest of the community into cryptocurrency
matters, it does not, however, distinguish between positivity, negativity and
neutrality of news, therefore constituting allegedly a more suitable candidate
predictor of volatility, rather than of price direction.

With the aim of comparing more in depth the differences in the BSADF
and BSCADF test outcomes, Figure 5 shows the scatter plot of the BSADF
and Brain Sentiment Index BSCADF tests’ p-values for the three analysed
cryptocurrencies over the considered sample period. We report a similar
comparison plot for the Google Search Index p-values in Figure A.10. From
the figure we notice that there exists a relatively high degree of correlation
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Figure 4: BSADF and BSCADF Google Search Index test p-values. The figure shows
the BSADF and BSCADF p-values (bottom panels), their difference and closing price
dynamics (top panels) of the three cryptocurrencies, using the Google Sentiment Index as
a covariate, over the full sample period. Black dashed lines indicate the 10% significance
level.

between the two p-values of the test statistics in the case of Bitcoin (correla-
tion: 0.8353) and Ripple (correlation: 0.7211). Interestingly, the correlation
of the two p-values is consistently lower for Ethereum. This is also in line
with the results obtained considering the Google Search Index as a covariate
in the test specification - see Figure A.10 in Appendix.

To get a further insight into the time-changing relationship between the
sentiment indicator and the cryptocurrency price behaviour, we perform a
rolling linear regression exercise, over 100-day windows, where the response
variable is the cryptocurrency return and the regressor is the lagged senti-
ment indicator. Figures 6 shows that, starting from September 2020, the
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Figure 5: Scatter plot of BSADF and Brain Sentiment Index BSCADF p-values. The
figure shows the scatter plot of the BSADF and Brain Sentiment Index BSCADF p-values
related for the three cryptocurrencies over the considered sample period. The value of ρ
indicates the correlation between the two test statistics.

estimated coefficients associated to the sentiment indicators grow sharply. It
can be noticed from Figure 7 that, repeating the same exercise using lagged
Google Search Indices as a regressor, the estimated coefficients are relatively
flatter. Therefore, in the most recent period, the sentiment indicators al-
legedly turn out to be more informative than the news volume in predicting
explosive behaviours in the cryptocurrency prices.
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Figure 6: Sentiment Index rolling regression coefficients. The figure shows the estimated
coefficients associated to the lagged Brain Sentiment index for the selected cryptocurren-
cies in a rolling linear regression exercise, where the response variable is the cryptocurrency
return. The rolling window is set to 100 observations.
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Figure 7: Google Search Index rolling regression coefficients. The figure shows the es-
timated coefficients associated to the lagged Google Search Index for the selected cryp-
tocurrencies in a rolling linear regression exercise, where the response variable is the cryp-
tocurrency return. The rolling window is set to 100 observations.
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4. Concluding remarks

The recent affirmation of high-volatile, sentiment-based market such as
the cryptocurrency one calls for the design and implementation of innovative
data science techniques, based upon sound econometric and statistical mod-
els, that can provide a timely signal of explosivity in the price behaviour of
digital currency, taking explicitly into account for investors’ sentiment.

To this aim, we propose a recursive covariate Augmented Dickey-Fuller
testing procedure, which leverages a high-dimensional set of cryptocurrency
news and Google search volumes to detect and anticipate bubble phenom-
ena in the price of three major cryptocurrencies, i.e. Bitcoin, Ethereum and
Ripple, over the period 31 May 2019 - 31 May 2021. Specifically, we apply a
recursive ADF testing procedure which takes into account dependence of the
price series on any relevant covariates, so to detect explosive price behaviour.
This approach allows us to improve bubble identification, providing a more
effective signal of the exponential growth of the cryptocurrency prices.

Our results show that the BSCADF with sentiment does significantly di-
verge from the standard BSADF test well before price surges, thereby the
usefulness of the misalignment between the two test statistics in providing
an early-warning indicator for explosive time series behaviour. In concomi-
tance with the explosive dynamics of prices, instead, the two tests tend to
converge in supporting the rejection of the random walk hypothesis in favour
of explosivity. Additionally, our results provide evidence on the fact that
polarised sentiment indicators, rather than term search volumes, might be
better at anticipating explosivity, given their capability to distinguish among
negative, positive or neutral news volumes.

We remark that our methodology can be applied, without loss of general-
ity, to any financial or other kind of time series to detect, with an improved
power of the test, possible explosive trends in time series. This thanks to the
explanatory gain given by adding any relevant predictors of the dependent
variable to the specification of the standard univariate recursive ADF tests.
Further research might generalise the econometric properties of the test to
a multivariate framework, with the aim of designing an econometric testing
procedure capable to take into account for multiple covariates when detecting
time series explosiveness.
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Appendix A. Additional results

Figure A.8: Data correlation matrix. The figure shows the correlation matrix of Bit-
coin (BTC), Ethereum (ETH), Litecoin (LTC) prices, Brain Sentiment Indicator (B) and
Google Search Indices (G) over the full sample period.
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Figure A.9: Scatter and empirical distribution function plots. The figure shows the scat-
ter and empirical distribution function plot of Bitcoin, Ethereum, Litecoin prices, Brain
Sentiment Indicator and Google Search Indices over the full sample period.
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Figure A.10: Scatter plot of BSADF and Google Search Index BSCADF p-values. The
figure shows the scatter plot of the BSADF and Google Search Index BSCADF p-values
related for the three cryptocurrencies over the considered sample period. The value of ρ
indicates the correlation between the two test statistics.
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