

Katharina Filip Vienna University of Economics and Business

3rd Crypto Asset Lab Conference

Motivation

Why do people need and hold money?

Menger (1871), Mann (1971), Hayek (1990), Berentsen & Schär (2018)

- Cash purchases, holding reserves for future payments, standard of deferred payments, reliable unit of account
- Transaction function facilitates trading

Is currency better supplied by monopoly or competition?

Friedman (1960), Hayek (1990), White (2015)

Benevolence vs. profit-maximization

How do people adapt an (alternative) currency?

Kiyotaki & Wright (1993), Luther (2016), Alzahrani & Daim (2019)

- Network effect
- Changes in money holdings and behaviour

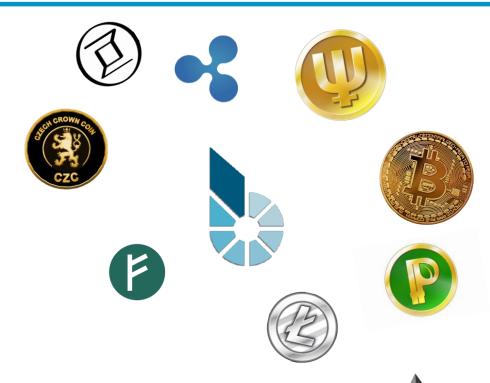


State and analyse transition dynamics in a New Monetarist Model

Lagos & Wright (2003, 2005), Williamson & Wright (2010), Waknis (2017), Fernández-Villaverde & Sanches (2016) CAL2021

Specifics of Cryptocurrencies

- Number of Altcoins rose rapidly
- Different characteristics
 - Anonymity
 - Transaction time
 - Transaction costs
 - Volatility/ Stability
- Wider functionality
 - Smart contracts (dapps, DeFi, tokenisation)
- Different reasons to hold and use a cryptocurrency
- Blockchain technology and cryptocurrencies keep improving



A New Monetarist Model The Life of the Agents

[0,1]-continuum of agents discrete time

period t

Agents decide how much to work, trade & consume to maximize utility with discount factor $\beta \in (0,1)$

Day-Market DM

- Decentralized Market
- Random bilateral matching
- Specialized good q

$$V(\boldsymbol{m_t}, \boldsymbol{s_t}) = \alpha \sigma \boldsymbol{\mu_t} \boldsymbol{\psi_t} \int \{u[q(\boldsymbol{m_t}, \tilde{\boldsymbol{m}_t}, \boldsymbol{s_t})] + W[\boldsymbol{m_t} - \boldsymbol{d_t}(\boldsymbol{m_t}, \tilde{\boldsymbol{m}_t}, \boldsymbol{s_t})]\} dF(\tilde{\boldsymbol{m}_t})$$

$$+ \alpha \sigma \boldsymbol{\mu_t} \boldsymbol{\psi_t} \int \{-c[q(\tilde{\boldsymbol{m}_t}, \boldsymbol{m_t}, \boldsymbol{s_t})] + W[\tilde{\boldsymbol{m}_t} + \boldsymbol{d}(\tilde{\boldsymbol{m}_t}, \boldsymbol{m_t}, \boldsymbol{s_t})]\} dF(\tilde{\boldsymbol{m}_t})$$

$$+ \alpha \delta \int B(\boldsymbol{m_t}, \tilde{\boldsymbol{m}_t}, \boldsymbol{s_t}) dF(\tilde{\boldsymbol{m}_t})$$

$$+ (1 - 2\alpha \sigma \boldsymbol{\mu_t} \boldsymbol{\psi_t} - \alpha \delta) W(\boldsymbol{m_t}, \boldsymbol{s_t})$$

Night-Market CM

- Centralized Market
- General good x

$$W(\boldsymbol{m_t}, \boldsymbol{s_t}) = \max_{x, H, \boldsymbol{m_{t+1}}} \{ U(x) - AH + \beta V(\boldsymbol{m_{t+1}}, \boldsymbol{s_{t+1}}) \}$$

$$s.t. \ x = \omega H + \phi_t \boldsymbol{m_t} + \boldsymbol{y_t} \boldsymbol{m_t} - \tau - \phi_t \boldsymbol{m_{t+1}}$$

A New Monetarist Model The Role of Money

The use of money is not necessary but may enhance trading!

Day-Market DM

- Single-coincidence meeting: period t
 pay/ receive money for specialized good q
- Double-coincidence meeting:
 barter trade

Night-Market CM

 Pay for or barter trade the general good x

- Agents decide how much money they want to hold and save for the next period m_{t+1}
- Optimal portfolio choice equilibrium condition:

$$\beta(\phi_{t+1}^{i} + y_{t+1}^{i})\{1 + l^{i}[q_{t+1}(\boldsymbol{m_{t+1}}, \boldsymbol{s_{t+1}})]\} = \phi_{t}^{i}$$
$$l^{i}[q(\boldsymbol{m_{t}}, \boldsymbol{s_{t}})] \equiv \alpha \sigma \mu_{t}^{i}(\frac{u'[q_{t}(\boldsymbol{m_{t}}, \boldsymbol{s_{t}})]}{c'[q_{t}(\boldsymbol{m_{t}}, \boldsymbol{s_{t}})]} - 1)$$

 ϕ_t^i ... value of currency i at time t y_t^i ... additional-value of currency i at time t l_t^i ... liquidity premium of currency i at time t

Equilibria

Only one Government Currency

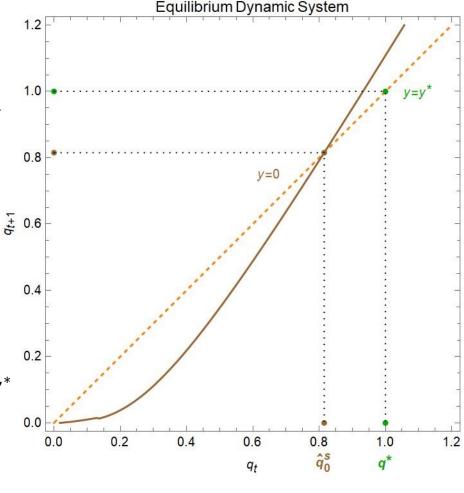
$$\beta \phi_{t+1}^g \{ 1 + l^g [\stackrel{\wedge}{q}_{t+1}(m_{t+1}, s_{t+1})] \} = \phi_t^g$$

- Steady state trading output \hat{q}_0^s with price stability $\phi_t^g = \phi_{t+1}^g$
- BUT: trading activity lower than socially optimal
- BUT: equilibrium trajectory with declining trading activity and declining money value, i.e. inflation

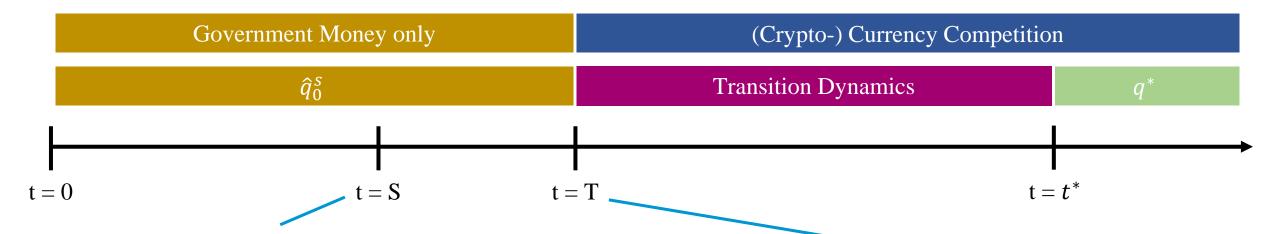
(Crypto-) Currency Competition

$$\beta(\phi^i + y^*)\{1 + l^i[q^*(\boldsymbol{m_{t+1}}, \boldsymbol{s_{t+1}})]\} = \phi^i$$

- Unique steady state socially optimum trading output q*
- Cryptocurrencies provide maximum feasible additional value y*
- Cryptocurrencies stable value $\phi_t^c = \phi_{t+1}^c$
- Government currency stable deflation rate $\rho^* = \frac{\phi_{t+1}^g}{\phi_t^g} > 1$



Evolving Competition



- t= S: Cryptocurrency becomes available in the economy
- Low initial acceptability $\mu_S^c \ll \mu^g = 1$
- Network effect prevents circulation in equilibrium
- But not perfect substitutes

Different characteristics and additional services can compensate lower acceptability

t = T: Cryptocurrency starts circulating in equilibrium

The lower the initial acceptability, the higher the necessary additional value for the agents

04.11.2021

Transition Dynamics

Technology improves

→ Additional service grows

$$n(y_t^c) = \frac{y_{t+1}^c - y_t^c}{y_t^c} = \frac{G(y_t^c)}{y_t^c} - 1 \geqslant 0 \quad \forall t \geqslant S$$

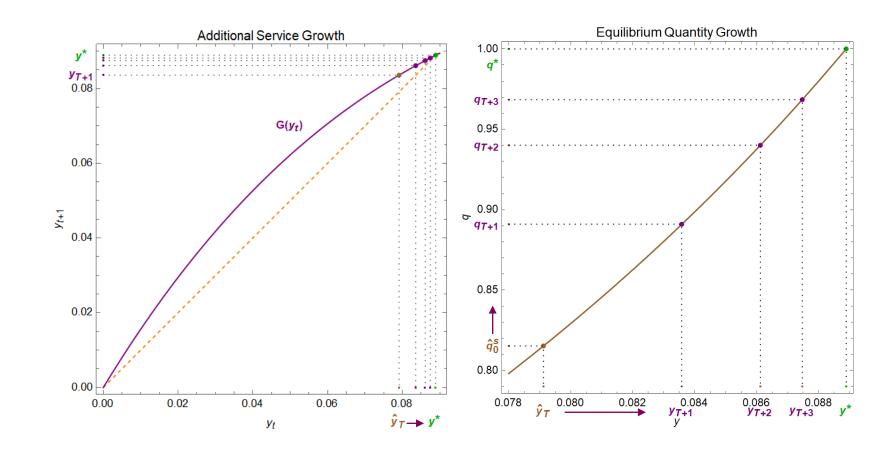
$$G(y_t^c) \geqslant y_t^c > 0 \quad \forall y_t^c \leqslant y^* \quad (positive)$$

$$n(y_t^c) \geqslant n(y_{t+1}^c) \geqslant 0 \quad (decreasing)$$

$$\lim_{t \to +\infty} n(y_t^c) = 0 \quad (tends \ to \ zero)$$

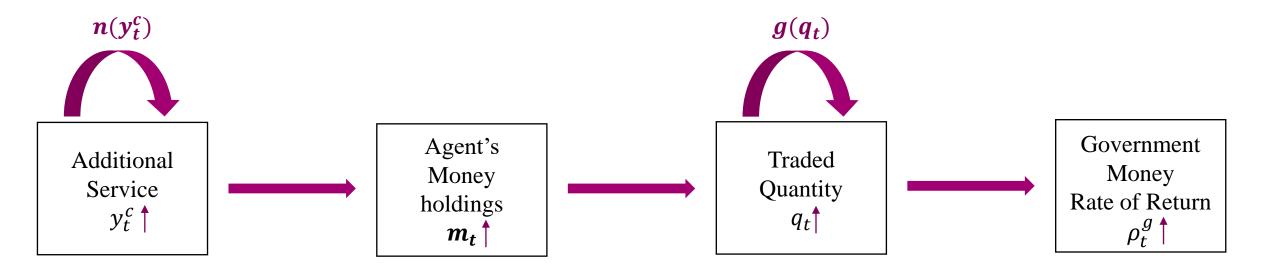
$$\exists y_{\infty}^* \quad s.t. \quad y_t \leqslant y_{\infty}^* \quad \forall t \quad (bounded)$$

→ Trading output increases



SLIDE 8

Transition Dynamics II



According to these dynamics the economy converges to the first-best unique steady state equilibrium:

- Cryptocurrency performs the best it can y^*
- Cryptocurrency is stable $\phi_t^c = \phi_{t+1}^c$
- Socially optimum trading output q^*
- Government currency stable deflation rate $\rho^* = \frac{\phi_{t+1}^g}{\phi_t^g} > 1$ (Friedman rule on currency)

04.11.2021

A New Monetarist Model Various Different Competing Cryptocurrencies

- Fundamental dynamics and properties persist
- Free-entry and market clearing condition need to be fulfilled
- Need to provide enough additional value to compensate different lower acceptability
 - The more they are accepted, the lower is the necessary additional value to start circulating
 - If not sufficient, they do not get valued in economy equilibrium
- Some cryptocurrencies may fail and lose their business in the perfect competitive currency environment
- Same amount of additional value does not imply same additional value
- Circulating cryptocurrencies can differ in their characteristics and services provided

• In first-best equilibrium with y^* all cryptocurrencies perform the best they can

EQUIS
ACCREDITED
ACCREDITED
ACCREDITED
ACCREDITED

SLIDE 10 CAL2021 KATHARINA FILIP 04.11.20

A New Monetarist Model Growing Acceptability

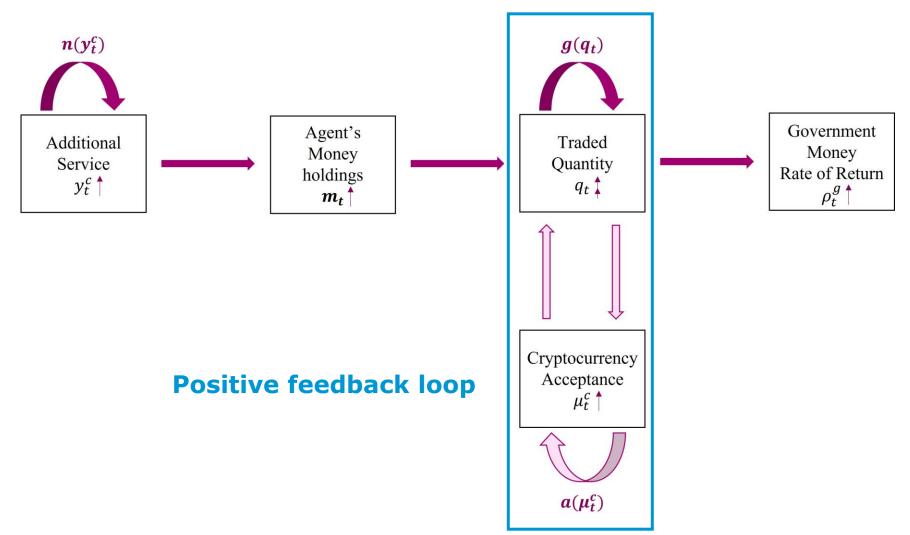
- Assume agents observe the enhanced trading activity through cryptocurrencies
 - → Learn about new possibilities
 - → More agents decide to accept this currency
- Assume acceptability of this currency increases related to output growth with one period lag

$$g(q_t) = \frac{q_{t+1} - q_t}{q_t} = \frac{q_{t+1}}{q_t} - 1 \geqslant 0 \ \forall t \geqslant T$$

$$a(\mu_t^c) = \frac{\mu_{t+1}^c - \mu_t^c}{\mu_t^c} \equiv A[g(q_{t-1})] \geqslant 0 \ \forall t \geqslant T+1$$

EQUIS
ACCREDITED
ACCREDITED
ACCREDITED
ACCREDITED

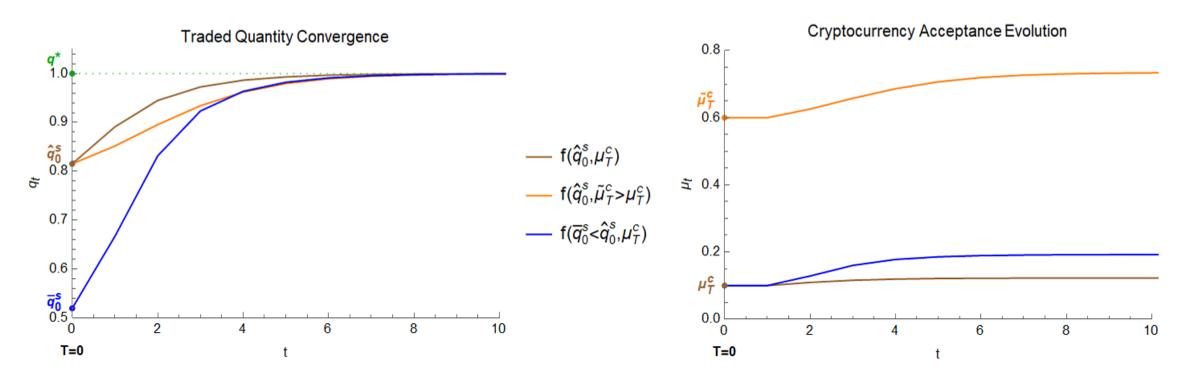
A New Monetarist Model Transition Dynamics III



EQUIS ACCREDITED

04.11.2021

A New Monetarist Model Simulation



- Overall, economically struggling economies gain more from (crypto-) currency competition
- Overall, cryptocurrency acceptability does not rise that much
- Cryptocurrencies establish themselves as various niche monies with different characteristics

04.11.2021

Conclusion

- Economy can profit from differentiated (crypto-) currency competition through increased money holdings and enhanced trading activity
- Main drivers for cryptocurrency adoption and economy transition are the different characteristics and value-added services of cryptocurrencies and technology growth to overcome strong network effects
- Cryptocurrencies establish themselves as various niche monies serving different consumer's needs
- (Crypto-) currency competition can lead to cryptocurrency price stability and a stable government money deflation rate

BUT:

- Model builds upon restrictive assumptions and simplifications
- Deflation generally not seen as desirable outcome for monetary policy
- Systemic and network risks in highly interconnected systems
- Further research needed

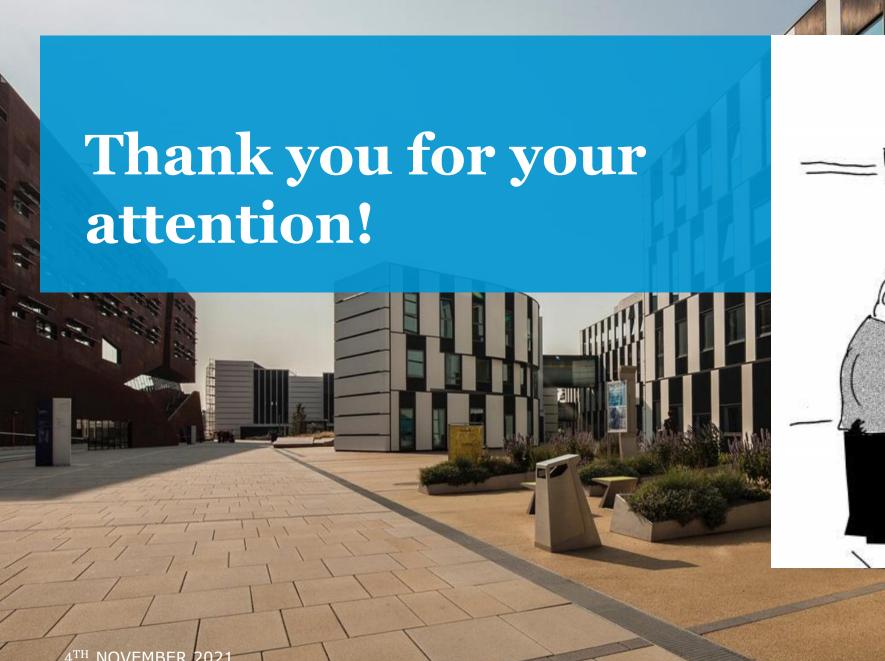
EQUIS
ACCREDITED

ACCREDITED

ACCREDITED

ACCREDITED

SLIDE 14 CAL2021 KATHARINA FILIP 04.11.20



References

- Alzahrani, S., & Daim, T. U. (2019). Analysis of the Cryptocurrency Adoption Decision: Literature Review. Portland International Conference on Management of Engineering and Technology (PICMET). Portland, OR.
- Berentsen, A., & Schär, F. (2018). A Short Introduction to the World of Cryptocurrencies. Federal Reserve Bank of St. Louis Review, 100(1), 1-16.
- Fernández-Villaverde, J., & Sanches, D. (2016). Can Currency Competition Work? (NBER Working Paper No. 22157). National Bureau of Economic Research.
- Friedman, M. (1960). A Program for Monetary Stability. New York, NY: Fordham University Press.
- Friedman, M. (1969). The Optimum Quantity of Money. New York, NY: Aldine Publishing Company.
- Hayek, F. A. (1990). Denationalisation of Money The Argument Refined (3rd ed.). London, England: The Institute of Economic Affairs.
- Kiyotaki, N., & Wright, R. (1993). A Search-Theoretic Approach to Monetary Economics. *The American Economic Review*, 83(1), 63–77.

References

- Lagos, R., & Wright, R. (2003). Dynamics, cycles, and sunspot equilibria in 'genuinely dynamic, fundamentally disaggregative' models of money. *Journal of Economic Theory*, 109(2), 156-171.
- Lagos, R., & Wright, R. (2005). A Unified Framework for Monetary Theory and Policy Analysis. *Journal of Political Economy*, 113(3), 463–484.
- Luther, W. J. (2016). Cryptocurrencies, Network Effects, and Switching Costs. Contemporary Economic Policy, 34 (3), 553–571.
- Mann, F. A. (1971). *The Legal Aspects of Money* (3rd ed.). London, England: Oxford University Press.
- Menger, C. (1871). Grundsätze der Volkswirtschaftslehre. Vienna, Austria: Wilhelm Braumüller.
- Waknis, P. (2017). Competitive Supply of Money in a New Monetarist Model (MPRA Paper No. 75401). Munich Personal RePEc Archive.
- White, L. H. (2015). The market for cryptocurrencies. Cato Journal, 35(2), 383–402.
- Williamson, S., & Wright, R. (2010). New Monetarist Economics: Models. In B. M. Friedman & M. Woodford (Eds.), *Handbook of Monetary Economics* (Vol. 3, p. 25-96). Amsterdam, The Netherlands: Elsevier.

Quasi-linear utility function of the agents in the economy

$$\mathcal{U}(q, x, H) = u(q) - c(q) + U(x) - AH$$

Furthermore, we assume that u(q), c(q) and U(x) are C^n with $n \ge 2$, u' > 0, u'' < 0, c' > 0, $c'' \ge 0$, u(0) = c(0) = 0, U' > 0, $U'' \le 0$ and there exists $q^* \in (0, \infty)$ s.t. $u'(q^*) = c'(q^*)$ as well as a $x^* \in (0, \infty)$ s.t. $U'(x^*) = 1$ and $U(x^*) > x^*$.

Dummy variable vor agent's currency holding

$$\psi_t^i = \begin{cases} 1 & \text{if } m_t^i > 0 \\ 0 & \text{if } m_t^i = 0 \end{cases}$$

Single-coincidence meeting

Centralized Nash bargaining problem, buyer has full bargaining power $\theta=1$

$$\begin{aligned} \max_{q, \mathbf{d}} [u(q) + W(\mathbf{m} - \mathbf{d}, \mathbf{s}) - W(\mathbf{m}, \mathbf{s})]^{\theta} [-c(q) + W(\tilde{\mathbf{m}} + \mathbf{d}, \mathbf{s}) - W(\tilde{\mathbf{m}}, \mathbf{s})]^{1-\theta} \\ s.t. & \mathbf{d} \leqslant \mathbf{m} \\ \max_{q, \mathbf{d}} [u(q) - (\phi + \mathbf{y})\mathbf{d}] \\ s.t. & \mathbf{d} \leqslant \mathbf{m} \\ s.t. & -c(q) + (\phi + \mathbf{y})\mathbf{d} \geqslant 0 \end{aligned}$$

$$q(\boldsymbol{m_t}, \boldsymbol{s_t}) = \begin{cases} \hat{q}(\boldsymbol{m_t}, \boldsymbol{s_t}) & \text{if } (\boldsymbol{\phi_t} + \boldsymbol{y_t}) \boldsymbol{m_t} < c(q^*) \\ q^* & \text{if } (\boldsymbol{\phi_t} + \boldsymbol{y_t}) \boldsymbol{m_t} \geqslant c(q^*) \end{cases}$$

$$(\phi_t + y_t)d_t(m_t, s_t) = \begin{cases} (\phi_t + y_t)m_t & \text{if } (\phi_t + y_t)m_t < c(q^*) \\ c(q^*) & \text{if } (\phi_t + y_t)m_t \geqslant c(q^*) \end{cases}$$

Double-coincidence meeting

Symmetric Nash bargaining problem

$$\max_{q_1,q_2,\boldsymbol{\Delta}}[u(q_1)-c(q_2)-(\boldsymbol{\phi}+\boldsymbol{y})\boldsymbol{\Delta}][u(q_2)-c(q_1)+(\boldsymbol{\phi}+\boldsymbol{y})\boldsymbol{\Delta}]$$

$$s.t. -\boldsymbol{m_2} \leqslant \boldsymbol{\Delta} \leqslant \boldsymbol{m_1}$$

$$\Delta = \lambda_1 = \lambda_2 = 0$$

$$q_1 = q_2 = q^*$$

$$u'(q^*) = c'(q^*)$$

$$B(\boldsymbol{m}, \tilde{\boldsymbol{m}}, \boldsymbol{s}) = u(q^*) - c(q^*) + W(\boldsymbol{m}, \boldsymbol{s})$$

Bellman's equation

$$V(\boldsymbol{m_t}, \boldsymbol{s_t}) = \max_{\boldsymbol{m_{t+1}}} \{ -\boldsymbol{\phi_t} \boldsymbol{m_{t+1}} + \beta V(\boldsymbol{m_{t+1}}, \boldsymbol{s_{t+1}}) \}$$

$$+ U(x^*) - x^* + \nu(\boldsymbol{m_t}, \boldsymbol{s_t})$$

$$+ (\boldsymbol{\phi_t} + \boldsymbol{y_t}) \boldsymbol{m_t} - \tau$$

$$\nu(\boldsymbol{m_t}, \boldsymbol{s_t}) = \begin{cases} &\alpha \sigma \boldsymbol{\mu_t} \boldsymbol{\psi_t} \{u[\hat{q}(\boldsymbol{m_t}, \boldsymbol{s_t})] - (\boldsymbol{\phi_t} + \boldsymbol{y_t}) \boldsymbol{m_t} \} \\ &+ \alpha \sigma \boldsymbol{\mu_t} \boldsymbol{\psi_t} \int \{-c[\hat{q}(\tilde{\boldsymbol{m_t}}, \boldsymbol{s_t})] + (\boldsymbol{\phi_t} + \boldsymbol{y_t}) \tilde{\boldsymbol{m_t}} \} dF(\tilde{\boldsymbol{m}}) & \text{if } (\boldsymbol{\phi_t} + \boldsymbol{y_t}) \boldsymbol{m_t} < c(q^*) \\ &+ \alpha \delta \{u(q^*) - c(q^*) \} \\ &+ \alpha (\sigma \boldsymbol{\mu_t} \boldsymbol{\psi_t} + \delta) \{u(q^*) - c(q^*) \} & \text{if } (\boldsymbol{\phi_t} + \boldsymbol{y_t}) \boldsymbol{m_t} \geqslant c(q^*) \end{cases}$$

22

Optimal portfolio choice

$$\frac{\partial V(\boldsymbol{m_t}, \boldsymbol{s_t})}{\partial m_{t+1}^i} = -\phi_t^i + \beta V^{i'}(\boldsymbol{m_{t+1}}, \boldsymbol{s_{t+1}}) \leqslant 0$$

$$\frac{\partial V(\boldsymbol{m_t}, \boldsymbol{s_t})}{\partial m_t^i} = \begin{cases} \alpha \sigma \mu_t^i (\phi_t^i + y_t^i) \frac{u^{i'}[\hat{q}(\boldsymbol{m_t}, \boldsymbol{s_t})]}{c^{i'}[\hat{q}(\boldsymbol{m_t}, \boldsymbol{s_t})]} + (1 - \alpha \sigma \mu_t^i) (\phi_t^i + y_t^i) & \text{if } (\phi_t + y_t) \boldsymbol{m_t} < c(q^*) \\ (\phi_t^i + y_t^i) & \text{if } (\phi_t + y_t) \boldsymbol{m_t} > c(q^*) \end{cases}$$

$$l^i[q(\boldsymbol{m_t}, \boldsymbol{s_t})] \equiv \alpha \sigma \mu_t^i (\frac{u'[\hat{q}_t(\boldsymbol{m_t}, \boldsymbol{s_t})]}{c'[\hat{q}(\boldsymbol{m_t}, \boldsymbol{s_t})]} - 1)$$

$$\frac{\partial V(\boldsymbol{m_t}, \boldsymbol{s_t})}{\partial m_t^i} = (\phi_t^i + y_t^i)\{1 + l^i[q(\boldsymbol{m_t}, \boldsymbol{s_t})]\}$$

$$\beta(\phi_{t+1}^i + y_{t+1}^i)\{1 + l^i[q_{t+1}(\boldsymbol{m_{t+1}}, \boldsymbol{s_{t+1}})]\} = \phi_t^i$$

$$l^i[q(\boldsymbol{m_t}, \boldsymbol{s_t})] \begin{cases} \neq 0 & \text{if } (\phi_t + y_t) \boldsymbol{m_t} < c(q^*) \\ = 0 & \text{if } (\phi_t + y_t) \boldsymbol{m_t} > c(q^*) \end{cases}$$

23

Government money

$$b_t^g \equiv \phi_t^g M_t^g$$

budget constraint yields

$$\phi_t^g M_t^g + \tau_t = \phi_t^g M_{t-1}^g$$

return on government money is

$$\rho_t^g \equiv \frac{\phi_t^g}{\phi_{t-1}^g}$$

Private currency issuers

$$\sum_{t=S}^{\infty} \beta^t x_t^c$$

$$x_t^c = \phi_t^c \Delta_{M_t^c} + y_t^c \Delta_{M_t^c} - \sum_{i \neq c} \phi_t^i \Delta_{M_t^i} - \sum_{i \neq c} y_t^i \Delta_{M_t^i}$$

$$b_t^c \equiv (\phi_t^c + y_t^c) M_t^c$$

Money equilibrium

Money supply

$$\sum_{i=1}^{N} b_t^i = b_t^g + \sum_{c=1}^{C} b_t^c = \phi_t^g M_t^g + (\phi_t^c + y_t^c) M_t^c \quad \forall t$$

Money demand

$$\sum_{i=1}^{N} b_t^i = z[q_t^{\wedge}(\boldsymbol{m_t}, \boldsymbol{s_t})]$$

Appendix Equilibria

Definition 1. Any equilibrium satisfies (12) and (19) with the boundary condition $\beta(\phi_{t+1}^i + y_{t+1}^i) \leq \phi_t^i$ and $b_t^i \geq 0 \ \forall i \in \{1, ..., N\}$ where $q(\boldsymbol{m_t}, \boldsymbol{s_t}) = \stackrel{\wedge}{q}(\boldsymbol{m_t}, \boldsymbol{s_t}) \leq q^*$ and $\boldsymbol{d}(\boldsymbol{m_t}, \boldsymbol{s_t}) = \boldsymbol{m_t} \leq \boldsymbol{m_t^*}$ with $\boldsymbol{m_t^*} \equiv \frac{c(q^*)}{(\phi_t + y_t)}$ at all time subject to the monetary policy the government implements and the optimal behaviour of the cryptocurrency issuers.

Proposition 1. An equilibrium with only one government money in circulation yields a monetary steady state equilibrium $0 < \hat{q}^s < q^*$ delivering price stability $(\rho^g, \rho_{+1}^g) = (1, 1)$ as well as a nonmonetary steady state $(\rho^g, \rho_{+1}^g) = (0, 0)$ with $\hat{q} = 0$. Furthermore there exists an equilibrium trajectory where $\hat{q}_t \to 0 \ \forall \hat{q}_0 \in (0, q^*)$.

Proposition 2. There exist a unique steady state equilibrium with circulating competitive currencies and the socially optimum trading activity q^* if the cryptocurrencies perform the best they can and implement $y^* = \frac{(1-\beta)}{\beta}\phi^c$ with a stable value $\phi_t^c = \phi_{t+1}^c = \phi^c$ and the government currency provides a stable deflation rate $\rho^g > 1$ $\forall t$ satisfying the equilibrium condition (12), the market-clearing condition (19) and the boundary condition $\beta(\phi_{t+1}^i + y_{t+1}^i) \leq \phi_t^i$. Thus, $d(m_t, s_t) = m_t = m_t^*$ with $m_t^* \equiv \frac{c(q^*)}{(\phi_t + y_t)}$.

Functional forms

$$\{1 + \alpha \sigma \mu_{t+1}^{i} \left(\frac{u'[q_{t+1}(\boldsymbol{m_{t+1}}, \boldsymbol{s_{t+1}})]}{c'[q_{t+1}(\boldsymbol{m_{t+1}}, \boldsymbol{s_{t+1}})]} - 1\right)\} = \frac{\phi_{t}^{i}}{\beta(\phi_{t+1}^{i} + y_{t+1}^{i})}$$

$$u(q) = (1 - \eta)^{-1} q^{1 - \eta}$$
 $c(q) = (1 + \gamma)^{-1} q^{1 + \gamma}$ $0 < \eta < 1$ $\gamma \ge 0$

$$\{1 + \alpha \sigma \mu_{t+1}^{i} (q_{t+1}^{-(\gamma+\eta)} - 1)\} = \frac{\phi_t^i}{\beta(\phi_{t+1}^i + y_{t+1}^i)}$$

$$\{1 + \alpha \sigma \mu^c (\hat{q}_0^{s^{-(\gamma+\eta)}} - 1)\} = \frac{\phi^c}{\beta(\phi^c + \hat{y}_T)} \equiv \{1 + \alpha \sigma \mu^g (\hat{q}_0^{s^{-(\gamma+\eta)}} - 1)\} = \frac{\phi^g}{\beta \phi^g}$$

28

Transition dynamics

Time T+1. At point T+1 in time we derive an equilibrium for the economy where the government currency and the cryptocurrency are circulating in a competitive environment with the traded quantity $q_{T+1} > \hat{q}_0^s$ due to an increase in the agents money holdings $m_{T+1} > m_T$ according to the increased additional service $y_{T+1} > \hat{y}_T$. The government currency is fully accepted $\mu^g = 1$ but deflates $\rho_{T+1}^g > 1$ and the cryptocurrency still provides stability $\phi_{T+1}^c = \phi_T^c$ and circulates with acceptability $\mu^c << \mu^g$.

Time t^* . At time t^* the economy reaches the first-best equilibrium with $q^* > \hat{q}_0^s$, $y^* > \hat{y}_T$, $m^* > m_T$ and $\mu^c << \mu^g = 1 \ \forall t \geqslant t^*$. The cryptocurrency is stable $\phi_{t^*}^c = \phi_{t^*+1}^c$ and the government currency provides a stable deflation rate $\rho^* > \rho^g = 1$. $n(y_{t^*}^c) = g(q_{t^*}) = 0$ and the economy is expected to stay in this steady state forever.

KATHARINA FILIP

Acceptability growth

Time T+2. In period T+2 the acceptability of the cryptocurrency increases $\mu_{T+2}^c > \mu_{T+1}^c = \mu_T^c$ due to the observed increase in the traded quantity the period before $a(\mu_{T+1}^c) \equiv A[g(q_T)]$. Again the technology improves resulting in an higher additional service provided by the cryptocurrency $y_{T+2} > y_{T+1}$. Hence the overall trading output enlarges even further $q_{T+2} > q_{T+1}$. The cryptocurrency is still stable $\phi_{T+2}^c = \phi_{T+1}^c$ while the deflation rate of the government money rises $\rho_{T+2}^g > \rho_{T+1}^g > 1$.

Time t^* . At time t^* the economy reaches the first-best equilibrium with $q^* > q_0^s, y^* > y_T^c, m^* > m_T, \mu^g = 1 \text{ and } 1 \geqslant \mu_{t^*}^c > \mu_T^c.$ The cryptocurrency is stable $\phi_{t^*}^c = \phi_{t^*+1}^c$ and the government currency provides a stable deflation rate $\rho^* > \rho^g = 1$. $n(y_{t^*}^c) = g(q_{t^*}) = a(\mu_{t^*}^c) = 0$ and the economy is expected to stay in this steady state forever.

KATHARINA FILIP

Acceptability growth

